test_modeling_flaubert.py 13.8 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre's avatar
Lysandre committed
24
25
26


if is_torch_available():
27
28
    import torch

Lysandre's avatar
Lysandre committed
29
30
    from transformers import (
        FlaubertConfig,
31
        FlaubertForMultipleChoice,
Lysandre's avatar
Lysandre committed
32
33
34
        FlaubertForQuestionAnswering,
        FlaubertForQuestionAnsweringSimple,
        FlaubertForSequenceClassification,
35
        FlaubertForTokenClassification,
36
37
        FlaubertModel,
        FlaubertWithLMHeadModel,
Lysandre's avatar
Lysandre committed
38
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
40
41


42
43
class FlaubertModelTester(object):
    def __init__(
Lysandre's avatar
Lysandre committed
44
45
        self,
        parent,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 12
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = None
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
78
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
97
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        config = FlaubertConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
Lysandre's avatar
Lysandre committed
116
117
        )

118
        return (
Lysandre's avatar
Style  
Lysandre committed
119
120
121
122
123
124
125
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
126
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
127
            input_mask,
128
129
130
131
132
133
134
135
136
137
138
        )

    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
139
        choice_labels,
140
141
142
143
144
        input_mask,
    ):
        model = FlaubertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
148
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
149
150
151
152
153
154
155
156
157
158

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
159
        choice_labels,
160
161
162
163
164
165
        input_mask,
    ):
        model = FlaubertWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
167
168
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
169
170
171
172
173
174
175
176
177
178

    def create_and_check_flaubert_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
179
        choice_labels,
180
181
182
183
184
185
        input_mask,
    ):
        model = FlaubertForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
186
        result = model(input_ids)
187

Sylvain Gugger's avatar
Sylvain Gugger committed
188
        result = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
189
190
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
191
192
193
194
195
196
197
198
199
200

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
201
        choice_labels,
202
203
204
205
206
207
        input_mask,
    ):
        model = FlaubertForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
208
        result = model(input_ids)
209

Sylvain Gugger's avatar
Sylvain Gugger committed
210
        result_with_labels = model(
Lysandre's avatar
Style  
Lysandre committed
211
            input_ids,
212
213
214
215
216
217
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
Lysandre's avatar
Lysandre committed
218

Sylvain Gugger's avatar
Sylvain Gugger committed
219
        result_with_labels = model(
220
221
222
223
224
225
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
Lysandre's avatar
Lysandre committed
226

Sylvain Gugger's avatar
Sylvain Gugger committed
227
        (total_loss,) = result_with_labels.to_tuple()
Lysandre's avatar
Lysandre committed
228

Sylvain Gugger's avatar
Sylvain Gugger committed
229
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Lysandre's avatar
Lysandre committed
230

Sylvain Gugger's avatar
Sylvain Gugger committed
231
        (total_loss,) = result_with_labels.to_tuple()
232

Stas Bekman's avatar
Stas Bekman committed
233
234
235
236
237
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
238
        )
Stas Bekman's avatar
Stas Bekman committed
239
240
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
241
        )
Stas Bekman's avatar
Stas Bekman committed
242
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
243
244
245
246
247
248
249
250
251
252

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
253
        choice_labels,
254
255
256
257
258
259
        input_mask,
    ):
        model = FlaubertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
262

Stas Bekman's avatar
Stas Bekman committed
263
264
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
265

266
267
268
269
270
271
272
273
274
    def create_and_check_flaubert_token_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
275
        choice_labels,
276
277
278
279
280
281
282
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = FlaubertForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
283
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
284
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    def create_and_check_flaubert_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = FlaubertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
305
        result = model(
306
307
308
309
310
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
311
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
312

313
314
315
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
Lysandre's avatar
Style  
Lysandre committed
316
317
318
319
320
321
322
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
323
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
324
            input_mask,
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            FlaubertModel,
            FlaubertWithLMHeadModel,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
340
            FlaubertForTokenClassification,
341
            FlaubertForMultipleChoice,
342
343
344
345
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    # Flaubert has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "FlaubertForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

Lysandre's avatar
Lysandre committed
362
    def setUp(self):
363
        self.model_tester = FlaubertModelTester(self)
Lysandre's avatar
Lysandre committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_simple_qa(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

389
390
391
392
    def test_flaubert_token_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_token_classif(*config_and_inputs)

393
394
395
396
    def test_flaubert_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
397
398
    @slow
    def test_model_from_pretrained(self):
399
        for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
400
            model = FlaubertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
401
            self.assertIsNotNone(model)