test_modeling_flaubert.py 13.1 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre's avatar
Lysandre committed
21
22

from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre's avatar
Lysandre committed
24
25
26
27
28


if is_torch_available():
    from transformers import (
        FlaubertConfig,
29
        FlaubertForMultipleChoice,
Lysandre's avatar
Lysandre committed
30
31
32
        FlaubertForQuestionAnswering,
        FlaubertForQuestionAnsweringSimple,
        FlaubertForSequenceClassification,
33
        FlaubertForTokenClassification,
34
35
        FlaubertModel,
        FlaubertWithLMHeadModel,
Lysandre's avatar
Lysandre committed
36
    )
37
    from transformers.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre's avatar
Lysandre committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class FlaubertModelTester(object):
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 12
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = None
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
75
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
94
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

        config = FlaubertConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
Sylvain Gugger's avatar
Sylvain Gugger committed
113
            return_dict=True,
Lysandre's avatar
Lysandre committed
114
115
        )

116
        return (
Lysandre's avatar
Style  
Lysandre committed
117
118
119
120
121
122
123
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
124
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
125
            input_mask,
126
127
128
129
130
131
132
133
134
135
136
        )

    def create_and_check_flaubert_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
137
        choice_labels,
138
139
140
141
142
        input_mask,
    ):
        model = FlaubertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
143
144
145
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
146
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
147
148
149
150
151
152
153
154
155
156

    def create_and_check_flaubert_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
157
        choice_labels,
158
159
160
161
162
163
        input_mask,
    ):
        model = FlaubertWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
164
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
165
166
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
167
168
169
170
171
172
173
174
175
176

    def create_and_check_flaubert_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
177
        choice_labels,
178
179
180
181
182
183
        input_mask,
    ):
        model = FlaubertForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
184
        result = model(input_ids)
185

Sylvain Gugger's avatar
Sylvain Gugger committed
186
        result = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
187
188
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
189
190
191
192
193
194
195
196
197
198

    def create_and_check_flaubert_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
199
        choice_labels,
200
201
202
203
204
205
        input_mask,
    ):
        model = FlaubertForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
206
        result = model(input_ids)
207

Sylvain Gugger's avatar
Sylvain Gugger committed
208
        result_with_labels = model(
Lysandre's avatar
Style  
Lysandre committed
209
            input_ids,
210
211
212
213
214
215
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
Lysandre's avatar
Lysandre committed
216

Sylvain Gugger's avatar
Sylvain Gugger committed
217
        result_with_labels = model(
218
219
220
221
222
223
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
Lysandre's avatar
Lysandre committed
224

Sylvain Gugger's avatar
Sylvain Gugger committed
225
        (total_loss,) = result_with_labels.to_tuple()
Lysandre's avatar
Lysandre committed
226

Sylvain Gugger's avatar
Sylvain Gugger committed
227
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Lysandre's avatar
Lysandre committed
228

Sylvain Gugger's avatar
Sylvain Gugger committed
229
        (total_loss,) = result_with_labels.to_tuple()
230

Stas Bekman's avatar
Stas Bekman committed
231
232
233
234
235
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
236
        )
Stas Bekman's avatar
Stas Bekman committed
237
238
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
239
        )
Stas Bekman's avatar
Stas Bekman committed
240
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
241
242
243
244
245
246
247
248
249
250

    def create_and_check_flaubert_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
251
        choice_labels,
252
253
254
255
256
257
        input_mask,
    ):
        model = FlaubertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
258
259
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
260

Stas Bekman's avatar
Stas Bekman committed
261
262
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
263

264
265
266
267
268
269
270
271
272
    def create_and_check_flaubert_token_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
273
        choice_labels,
274
275
276
277
278
279
280
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = FlaubertForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
281
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
282
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    def create_and_check_flaubert_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = FlaubertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
303
        result = model(
304
305
306
307
308
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
309
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
310

311
312
313
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
Lysandre's avatar
Style  
Lysandre committed
314
315
316
317
318
319
320
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
321
            choice_labels,
Lysandre's avatar
Style  
Lysandre committed
322
            input_mask,
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class FlaubertModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            FlaubertModel,
            FlaubertWithLMHeadModel,
            FlaubertForQuestionAnswering,
            FlaubertForQuestionAnsweringSimple,
            FlaubertForSequenceClassification,
338
            FlaubertForTokenClassification,
339
            FlaubertForMultipleChoice,
340
341
342
343
        )
        if is_torch_available()
        else ()
    )
Lysandre's avatar
Lysandre committed
344
345

    def setUp(self):
346
        self.model_tester = FlaubertModelTester(self)
Lysandre's avatar
Lysandre committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        self.config_tester = ConfigTester(self, config_class=FlaubertConfig, emb_dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_flaubert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_model(*config_and_inputs)

    def test_flaubert_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_lm_head(*config_and_inputs)

    def test_flaubert_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_simple_qa(*config_and_inputs)

    def test_flaubert_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_qa(*config_and_inputs)

    def test_flaubert_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_sequence_classif(*config_and_inputs)

372
373
374
375
    def test_flaubert_token_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_token_classif(*config_and_inputs)

376
377
378
379
    def test_flaubert_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_flaubert_multiple_choice(*config_and_inputs)

Lysandre's avatar
Lysandre committed
380
381
    @slow
    def test_model_from_pretrained(self):
382
        for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
383
            model = FlaubertModel.from_pretrained(model_name)
Lysandre's avatar
Lysandre committed
384
            self.assertIsNotNone(model)