"examples/run_squad.py" did not exist on "d69b0b0e90551fd79a95060bf0f610af2508e481"
test_trainer.py 8.86 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
import unittest

Sylvain Gugger's avatar
Sylvain Gugger committed
3
4
import numpy as np

Julien Chaumond's avatar
Julien Chaumond committed
5
from transformers import AutoTokenizer, TrainingArguments, is_torch_available
6
from transformers.testing_utils import require_torch
Julien Chaumond's avatar
Julien Chaumond committed
7
8
9
10


if is_torch_available():
    import torch
11
12
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
13
14
15
16
    from transformers import (
        AutoModelForSequenceClassification,
        GlueDataset,
        GlueDataTrainingArguments,
17
18
        LineByLineTextDataset,
        Trainer,
Julien Chaumond's avatar
Julien Chaumond committed
19
20
21
22
23
24
    )


PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"


Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
28
29
30
class RegressionDataset:
    def __init__(self, a=2, b=3, length=64, seed=42):
        np.random.seed(seed)
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
        self.y = a * self.x + b + np.random.normal(scale=0.1, size=(length,))
Julien Chaumond's avatar
Julien Chaumond committed
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.x[i], "label": self.y[i]}


class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
47

Julien Chaumond's avatar
Julien Chaumond committed
48

49
50
51
52
53
54
55
56
57
58
59
60
61
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
        def __init__(self, file_path):
            self.file_path = file_path

        def parse_file(self):
            f = open(self.file_path, "r")
            return f.readlines()

        def __iter__(self):
            return iter(self.parse_file())

Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    class RegressionModel(torch.nn.Module):
        def __init__(self, a=0, b=0):
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())

        def forward(self, input_x=None, labels=None):
            y = input_x * self.a + self.b
            if labels is None:
                return (y,)
            loss = torch.nn.functional.mse_loss(y, labels)
            return (loss, y)

    def get_regression_trainer(a=0, b=0, train_len=64, eval_len=64, **kwargs):
        train_dataset = RegressionDataset(length=train_len)
        eval_dataset = RegressionDataset(length=eval_len)
        model = RegressionModel(a, b)
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
        args = TrainingArguments("./regression", **kwargs)
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
        )

93

Julien Chaumond's avatar
Julien Chaumond committed
94
95
@require_torch
class TrainerIntegrationTest(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    def setUp(self):
        # Get the default values (in case they change):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.per_device_train_batch_size

    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.assertTrue(torch.abs(trainer.model.a - 0.6975) < 1e-4)
        self.assertTrue(torch.abs(trainer.model.b - 1.2415) < 1e-4)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.assertTrue(torch.abs(trainer.model.a - 1.0171) < 1e-4)
        self.assertTrue(torch.abs(trainer.model.b - 1.2494) < 1e-4)

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16 + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32 + 1)

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // 32)

        # Check passing a new dataset fpr evaluation wors
        new_eval_dataset = RegressionDataset(length=128)
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // 32)

    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

Julien Chaumond's avatar
Julien Chaumond committed
193
194
195
196
197
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
198
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
199
        )
200
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
201
202
203
204

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
205
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
206
207
208
209
210
211
212
213

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence,
        )
        self.assertEqual(len(dataset), 31)
214
215
216
217
218
219
220
221
222

    def test_trainer_iterable_dataset(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-cased"
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        train_dataset = SampleIterableDataset(PATH_SAMPLE_TEXT)
        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)