run_semantic_segmentation.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import json
import logging
import os
import sys
20
import warnings
21
from dataclasses import dataclass, field
22
from functools import partial
23
24
from typing import Optional

25
import albumentations as A
26
import evaluate
27
28
import numpy as np
import torch
29
from albumentations.pytorch import ToTensorV2
30
from datasets import load_dataset
31
from huggingface_hub import hf_hub_download
32
33
34
35
36
from torch import nn

import transformers
from transformers import (
    AutoConfig,
37
    AutoImageProcessor,
38
39
40
41
42
43
44
    AutoModelForSemanticSegmentation,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
)
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version, send_example_telemetry
46
47
48
49
50
51
52
53
from transformers.utils.versions import require_version


""" Finetuning any 馃 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API."""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
54
check_min_version("4.40.0.dev0")
55
56
57
58

require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")


59
60
def reduce_labels_transform(labels: np.ndarray, **kwargs) -> np.ndarray:
    """Set `0` label as with value 255 and then reduce all other labels by 1.
61

62
63
64
    Example:
        Initial class labels:         0 - background; 1 - road; 2 - car;
        Transformed class labels:   255 - background; 0 - road; 1 - car;
65

66
67
68
69
70
71
    **kwargs are required to use this function with albumentations.
    """
    labels[labels == 0] = 255
    labels = labels - 1
    labels[labels == 254] = 255
    return labels
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
    """

    dataset_name: Optional[str] = field(
        default="segments/sidewalk-semantic",
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
101
102
103
104
105
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
109
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        },
    )
    reduce_labels: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
    )

    def __post_init__(self):
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="nvidia/mit-b0",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
144
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
145
146
    token: str = field(
        default=None,
147
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
148
            "help": (
149
150
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
151
            )
152
153
        },
    )
154
155
156
    use_auth_token: bool = field(
        default=None,
        metadata={
157
            "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
158
159
        },
    )
160
161
162
163
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
164
                "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
165
                "should only be set to `True` for repositories you trust and in which you have read the code, as it will "
166
167
168
169
                "execute code present on the Hub on your local machine."
            )
        },
    )
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

185
    if model_args.use_auth_token is not None:
186
187
188
189
        warnings.warn(
            "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
            FutureWarning,
        )
190
191
192
193
        if model_args.token is not None:
            raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
        model_args.token = model_args.use_auth_token

194
195
196
197
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_semantic_segmentation", model_args, data_args)

198
199
200
201
202
203
204
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

205
206
207
208
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

209
210
211
212
213
214
215
216
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
217
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
218
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
    dataset = load_dataset(data_args.dataset_name, cache_dir=model_args.cache_dir)

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if data_args.dataset_name == "scene_parse_150":
259
        repo_id = "huggingface/label-files"
260
261
        filename = "ade20k-id2label.json"
    else:
262
        repo_id = data_args.dataset_name
263
        filename = "id2label.json"
264
    id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
265
266
267
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: str(k) for k, v in id2label.items()}

268
    # Load the mean IoU metric from the evaluate package
269
    metric = evaluate.load("mean_iou", cache_dir=model_args.cache_dir)
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    @torch.no_grad()
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        logits_tensor = torch.from_numpy(logits)
        # scale the logits to the size of the label
        logits_tensor = nn.functional.interpolate(
            logits_tensor,
            size=labels.shape[-2:],
            mode="bilinear",
            align_corners=False,
        ).argmax(dim=1)

        pred_labels = logits_tensor.detach().cpu().numpy()
        metrics = metric.compute(
            predictions=pred_labels,
            references=labels,
            num_labels=len(id2label),
            ignore_index=0,
291
            reduce_labels=image_processor.do_reduce_labels,
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        )
        # add per category metrics as individual key-value pairs
        per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
        per_category_iou = metrics.pop("per_category_iou").tolist()

        metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
        metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})

        return metrics

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        label2id=label2id,
        id2label=id2label,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
308
        token=model_args.token,
309
        trust_remote_code=model_args.trust_remote_code,
310
311
312
313
314
315
316
    )
    model = AutoModelForSemanticSegmentation.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
317
        token=model_args.token,
318
        trust_remote_code=model_args.trust_remote_code,
319
    )
320
321
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
322
323
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
324
        token=model_args.token,
325
        trust_remote_code=model_args.trust_remote_code,
326
    )
327
328
329
    # `reduce_labels` is a property of dataset labels, in case we use image_processor
    # pretrained on another dataset we should override the default setting
    image_processor.do_reduce_labels = data_args.reduce_labels
330

331
    # Define transforms to be applied to each image and target.
332
    if "shortest_edge" in image_processor.size:
amyeroberts's avatar
amyeroberts committed
333
        # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
334
        height, width = image_processor.size["shortest_edge"], image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
335
    else:
336
337
        height, width = image_processor.size["height"], image_processor.size["width"]
    train_transforms = A.Compose(
338
        [
339
340
341
342
343
344
345
346
347
348
349
            A.Lambda(
                name="reduce_labels",
                mask=reduce_labels_transform if data_args.reduce_labels else None,
                p=1.0,
            ),
            # pad image with 255, because it is ignored by loss
            A.PadIfNeeded(min_height=height, min_width=width, border_mode=0, value=255, p=1.0),
            A.RandomCrop(height=height, width=width, p=1.0),
            A.HorizontalFlip(p=0.5),
            A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std, max_pixel_value=255.0, p=1.0),
            ToTensorV2(),
350
351
        ]
    )
352
    val_transforms = A.Compose(
353
        [
354
355
356
357
358
359
360
361
            A.Lambda(
                name="reduce_labels",
                mask=reduce_labels_transform if data_args.reduce_labels else None,
                p=1.0,
            ),
            A.Resize(height=height, width=width, p=1.0),
            A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std, max_pixel_value=255.0, p=1.0),
            ToTensorV2(),
362
363
364
        ]
    )

365
    def preprocess_batch(example_batch, transforms: A.Compose):
366
367
368
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"], example_batch["label"]):
369
370
371
            transformed = transforms(image=np.array(image.convert("RGB")), mask=np.array(target))
            pixel_values.append(transformed["image"])
            labels.append(transformed["mask"])
372

373
        encoding = {}
374
375
        encoding["pixel_values"] = torch.stack(pixel_values).to(torch.float)
        encoding["labels"] = torch.stack(labels).to(torch.long)
376
377
378

        return encoding

379
380
381
382
    # Preprocess function for dataset should have only one argument,
    # so we use partial to pass the transforms
    preprocess_train_batch_fn = partial(preprocess_batch, transforms=train_transforms)
    preprocess_val_batch_fn = partial(preprocess_batch, transforms=val_transforms)
383
384
385
386
387
388
389
390
391

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
        # Set the training transforms
392
        dataset["train"].set_transform(preprocess_train_batch_fn)
393
394
395
396
397
398
399
400
401

    if training_args.do_eval:
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
402
        dataset["validation"].set_transform(preprocess_val_batch_fn)
403

404
    # Initialize our trainer
405
406
407
408
409
410
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
NielsRogge's avatar
NielsRogge committed
411
        tokenizer=image_processor,
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "dataset": data_args.dataset_name,
        "tags": ["image-segmentation", "vision"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()