"PyTorch/Speech/Tacotron2/tacotron2/loss_function.py" did not exist on "0e04b692e6f879d1641a890cb3b32913d9e341c8"
test_modeling_marian.py 11.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import AutoConfig, AutoTokenizer, MarianConfig, MarianTokenizer, is_torch_available
20
from transformers.file_utils import cached_property
21
from transformers.hf_api import HfApi
22
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
23

24
25
from .test_modeling_common import ModelTesterMixin

26
27
28

if is_torch_available():
    import torch
29

30
    from transformers import AutoModelWithLMHead, MarianMTModel
31
    from transformers.convert_marian_to_pytorch import (
32
        ORG_NAME,
33
34
35
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
Sam Shleifer's avatar
Sam Shleifer committed
36
    from transformers.modeling_bart import shift_tokens_right
37
    from transformers.pipelines import TranslationPipeline
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
class ModelTester:
    def __init__(self, parent):
        self.config = MarianConfig(
            vocab_size=99,
            d_model=24,
            encoder_layers=2,
            decoder_layers=2,
            encoder_attention_heads=2,
            decoder_attention_heads=2,
            encoder_ffn_dim=32,
            decoder_ffn_dim=32,
            max_position_embeddings=48,
            add_final_layer_norm=True,
            return_dict=True,
        )

    def prepare_config_and_inputs_for_common(self):
        return self.config, {}


@require_torch
class SelectiveCommonTest(unittest.TestCase):
    all_model_classes = (MarianMTModel,) if is_torch_available() else ()

    test_save_load_keys_to_never_save = ModelTesterMixin.test_save_load_keys_to_never_save

    def setUp(self):
        self.model_tester = ModelTester(self)


70
71
class ModelManagementTests(unittest.TestCase):
    @slow
Lysandre Debut's avatar
Lysandre Debut committed
72
    @require_torch
73
    def test_model_names(self):
74
        model_list = HfApi().model_list()
75
76
77
78
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
79
80
81


@require_torch
82
83
@require_sentencepiece
@require_tokenizers
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

105
106
    @classmethod
    def setUpClass(cls) -> None:
107
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
108
109
        return cls

110
111
112
113
114
115
116
117
    @cached_property
    def tokenizer(self) -> MarianTokenizer:
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

118
119
    @cached_property
    def model(self):
120
121
122
123
124
125
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

126
127
128
129
130
        if torch_device == "cuda":
            return model.half()
        else:
            return model

131
132
133
134
135
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
136
        model_inputs = self.tokenizer.prepare_seq2seq_batch(src_texts=self.src_text, **tokenizer_kwargs).to(
137
138
            torch_device
        )
139
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
140
        generated_ids = self.model.generate(
141
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
142
143
144
145
146
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


147
148
@require_sentencepiece
@require_tokenizers
149
class TestMarian_EN_DE_More(MarianIntegrationTest):
150
151
    @slow
    def test_forward(self):
152
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
153
        expected_ids = [38, 121, 14, 697, 38848, 0]
154

155
        model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt).to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
156

157
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
158
159
160
161

        desired_keys = {
            "input_ids",
            "attention_mask",
Sam Shleifer's avatar
Sam Shleifer committed
162
            "labels",
163
164
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
Sam Shleifer's avatar
Sam Shleifer committed
165
166
167
        model_inputs["decoder_input_ids"] = shift_tokens_right(model_inputs.labels, self.tokenizer.pad_token_id)
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
168
        with torch.no_grad():
Sam Shleifer's avatar
Sam Shleifer committed
169
170
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
171
        self.tokenizer.batch_decode(max_indices)
172

173
174
    def test_unk_support(self):
        t = self.tokenizer
175
        ids = t.prepare_seq2seq_batch(["||"]).to(torch_device).input_ids[0].tolist()
176
177
178
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

179
    def test_pad_not_split(self):
180
        input_ids_w_pad = self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"]).input_ids[0].tolist()
181
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
182
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
183
184
185
186
187
188
189
190
191
192

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


193
194
@require_sentencepiece
@require_tokenizers
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


212
213
@require_sentencepiece
@require_tokenizers
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


231
232
@require_sentencepiece
@require_tokenizers
233
234
235
236
class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
237
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
238

239
    @slow
240
241
242
243
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


244
245
@require_sentencepiece
@require_tokenizers
246
class TestMarian_MT_EN(MarianIntegrationTest):
247
248
    """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""

249
250
    src = "mt"
    tgt = "en"
251
252
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
253

254
    @slow
255
256
257
258
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


259
260
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
261
262
263
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
264
265
266
267
268
269
270
271
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


272
273
@require_sentencepiece
@require_tokenizers
274
275
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
276

277
278
279
280
281
282
283
284
285
286
287
288
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
289

290
291
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
292
293
        self._assert_generated_batch_equal_expected()

294
295
296
297
    def test_tokenizer_handles_empty(self):
        normalized = self.tokenizer.normalize("")
        self.assertIsInstance(normalized, str)
        with self.assertRaises(ValueError):
298
            self.tokenizer.prepare_seq2seq_batch([""])
299

300
    @slow
301
    def test_pipeline(self):
302
303
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
304
305
306
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)