test_modeling_marian.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
from transformers import AutoConfig, AutoTokenizer, MarianConfig, MarianTokenizer, is_torch_available
20
from transformers.file_utils import cached_property
21
from transformers.hf_api import HfApi
22
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
23
24
25
26


if is_torch_available():
    import torch
27

28
    from transformers import AutoModelWithLMHead, MarianMTModel
29
    from transformers.convert_marian_to_pytorch import (
30
        ORG_NAME,
31
32
33
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
Sam Shleifer's avatar
Sam Shleifer committed
34
    from transformers.modeling_bart import shift_tokens_right
35
    from transformers.pipelines import TranslationPipeline
36
37
38
39


class ModelManagementTests(unittest.TestCase):
    @slow
40
    def test_model_names(self):
41
        model_list = HfApi().model_list()
42
43
44
45
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
46
47
48


@require_torch
49
50
@require_sentencepiece
@require_tokenizers
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

72
73
    @classmethod
    def setUpClass(cls) -> None:
74
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
75
76
        return cls

77
78
79
80
81
82
83
84
    @cached_property
    def tokenizer(self) -> MarianTokenizer:
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

85
86
    @cached_property
    def model(self):
87
88
89
90
91
92
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

93
94
95
96
97
        if torch_device == "cuda":
            return model.half()
        else:
            return model

98
99
100
101
102
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
103
        model_inputs = self.tokenizer.prepare_seq2seq_batch(src_texts=self.src_text, **tokenizer_kwargs).to(
104
105
            torch_device
        )
106
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
107
        generated_ids = self.model.generate(
108
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2
109
110
111
112
113
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


114
115
@require_sentencepiece
@require_tokenizers
116
class TestMarian_EN_DE_More(MarianIntegrationTest):
117
118
    @slow
    def test_forward(self):
119
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
120
        expected_ids = [38, 121, 14, 697, 38848, 0]
121

122
        model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt).to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
123

124
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
125
126
127
128

        desired_keys = {
            "input_ids",
            "attention_mask",
Sam Shleifer's avatar
Sam Shleifer committed
129
            "labels",
130
131
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
Sam Shleifer's avatar
Sam Shleifer committed
132
133
134
        model_inputs["decoder_input_ids"] = shift_tokens_right(model_inputs.labels, self.tokenizer.pad_token_id)
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
135
        with torch.no_grad():
Sam Shleifer's avatar
Sam Shleifer committed
136
137
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
138
        self.tokenizer.batch_decode(max_indices)
139

140
141
    def test_unk_support(self):
        t = self.tokenizer
142
        ids = t.prepare_seq2seq_batch(["||"]).to(torch_device).input_ids[0].tolist()
143
144
145
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

146
    def test_pad_not_split(self):
147
        input_ids_w_pad = self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"]).input_ids[0].tolist()
148
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
149
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
150
151
152
153
154
155
156
157
158
159

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


160
161
@require_sentencepiece
@require_tokenizers
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


179
180
@require_sentencepiece
@require_tokenizers
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


198
199
@require_sentencepiece
@require_tokenizers
200
201
202
203
class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
204
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
205

206
    @slow
207
208
209
210
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


211
212
@require_sentencepiece
@require_tokenizers
213
214
215
class TestMarian_MT_EN(MarianIntegrationTest):
    src = "mt"
    tgt = "en"
216
217
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
218

219
    @slow
220
221
222
223
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


224
225
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
226
227
228
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
229
230
231
232
233
234
235
236
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


237
238
@require_sentencepiece
@require_tokenizers
239
240
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
241

242
243
244
245
246
247
248
249
250
251
252
253
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
254

255
256
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
257
258
        self._assert_generated_batch_equal_expected()

259
260
261
262
    def test_tokenizer_handles_empty(self):
        normalized = self.tokenizer.normalize("")
        self.assertIsInstance(normalized, str)
        with self.assertRaises(ValueError):
263
            self.tokenizer.prepare_seq2seq_batch([""])
264

265
    def test_pipeline(self):
266
267
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
268
269
270
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)