"lmdeploy/vscode:/vscode.git/clone" did not exist on "e8ab4ba33785c348235c1ef932c7671e7e64687d"
test_modeling_marian.py 8.32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2020 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
21
from transformers.hf_api import HfApi
22
23
24
25
26
27

from .utils import require_torch, slow, torch_device


if is_torch_available():
    import torch
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    from transformers import (
        AutoTokenizer,
        MarianConfig,
        AutoConfig,
        AutoModelWithLMHead,
        MarianTokenizer,
        MarianMTModel,
    )


class ModelManagementTests(unittest.TestCase):
    @slow
    def test_model_count(self):
        model_list = HfApi().model_list()
        expected_num_models = 1011
        actual_num_models = len([x for x in model_list if x.modelId.startswith("Helsinki-NLP")])
        self.assertEqual(expected_num_models, actual_num_models)
45
46
47


@require_torch
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

69
70
    @classmethod
    def setUpClass(cls) -> None:
71
72
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
        cls.tokenizer: MarianTokenizer = AutoTokenizer.from_pretrained(cls.model_name)
73
74
75
76
77
        cls.eos_token_id = cls.tokenizer.eos_token_id
        return cls

    @cached_property
    def model(self):
78
79
80
81
82
83
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

84
85
86
87
88
        if torch_device == "cuda":
            return model.half()
        else:
            return model

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
        model_inputs: dict = self.tokenizer.prepare_translation_batch(src_texts=self.src_text, **tokenizer_kwargs).to(
            torch_device
        )
        self.assertEqual(self.model.device, model_inputs["input_ids"].device)
        generated_ids = self.model.generate(
            model_inputs["input_ids"], attention_mask=model_inputs["attention_mask"], num_beams=2
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


class TestMarian_EN_DE_More(MarianIntegrationTest):
106
107
    @slow
    def test_forward(self):
108
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        expected = [38, 121, 14, 697, 38848, 0]

        model_inputs: dict = self.tokenizer.prepare_translation_batch(src, tgt_texts=tgt).to(torch_device)
        self.assertListEqual(expected, model_inputs["input_ids"][0].tolist())

        desired_keys = {
            "input_ids",
            "attention_mask",
            "decoder_input_ids",
            "decoder_attention_mask",
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
        with torch.no_grad():
            logits, *enc_features = self.model(**model_inputs)
        max_indices = logits.argmax(-1)
124
        self.tokenizer.batch_decode(max_indices)
125

126
    def test_tokenizer_equivalence(self):
127
128
129
130
131
        batch = self.tokenizer.prepare_translation_batch(["I am a small frog"]).to(torch_device)
        input_ids = batch["input_ids"][0]
        expected = [38, 121, 14, 697, 38848, 0]
        self.assertListEqual(expected, input_ids.tolist())

132
133
134
135
136
137
    def test_unk_support(self):
        t = self.tokenizer
        ids = t.prepare_translation_batch(["||"]).to(torch_device)["input_ids"][0].tolist()
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

138
139
140
141
    def test_pad_not_split(self):
        input_ids_w_pad = self.tokenizer.prepare_translation_batch(["I am a small frog <pad>"])["input_ids"][0]
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
        self.assertListEqual(expected_w_pad, input_ids_w_pad.tolist())
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
    expected_text = ["Il me montre un manuscrit de sa nouvelle pièce."]

    @slow
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_MT_EN(MarianIntegrationTest):
    src = "mt"
    tgt = "en"
    src_text = ["Il - Babiloniżi b'mod żbaljat ikkonkludew li l - Alla l - veru kien dgħajjef."]
    expected_text = ["The Babylonians wrongly concluded that the true God was weak."]

    @unittest.skip("")  # Known Issue: This model generates a string of .... at the end of the translation.
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


class TestMarian_DE_Multi(MarianIntegrationTest):
    src = "de"
    tgt = "ch_group"
    src_text = ["Er aber sprach: Das ist die Gottlosigkeit."]

    @slow
    def test_translation_de_multi_does_not_error(self):
        self.translate_src_text()

    @unittest.skip("")  # "Language codes are not yet supported."
    def test_batch_generation_de_multi_tgt(self):
        self._assert_generated_batch_equal_expected()

    @unittest.skip("")  # "Language codes are not yet supported."
    def test_lang_code(self):
        t = "Er aber sprach"
        zh_code = self.code
        tok_fn = self.tokenizer.prepare_translation_batch
        pass_code = tok_fn(src_texts=[t], tgt_lang_code=zh_code)["input_ids"][0]
        preprocess_with_code = tok_fn(src_texts=[zh_code + "  " + t])["input_ids"][0]
        self.assertListEqual(pass_code.tolist(), preprocess_with_code.tolist())
        for code in self.tokenizer.supported_language_codes:
            self.assertIn(code, self.tokenizer.encoder)
        pass_only_code = tok_fn(src_texts=[""], tgt_lang_code=zh_code)["input_ids"][0].tolist()
        self.assertListEqual(pass_only_code, [self.tokenizer.encoder[zh_code], self.tokenizer.eos_token_id])