test_trainer_distributed.py 9.38 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
from typing import Dict

17
18
import numpy as np

19
from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available
20
21
22
23
24
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_torch_dist_unique_port,
    require_torch_multi_gpu,
25
    require_torch_multi_xpu,
26
    require_torch_neuroncore,
27
    require_torch_npu,
28
)
29
from transformers.training_args import ParallelMode
30
from transformers.utils import logging
31
32


33
logger = logging.get_logger(__name__)
34
35
36
37
38


if is_torch_available():
    import torch
    from torch import nn
39
    from torch.utils.data import Dataset, IterableDataset
40

41
    from transformers import Trainer
42
43
44
45
46
47
48
49
50
51
52

    class DummyDataset(Dataset):
        def __init__(self, length: int = 101):
            self.length = length

        def __len__(self):
            return self.length

        def __getitem__(self, i) -> int:
            return i

53
54
    class DummyDataCollator:
        def __call__(self, features):
55
56
57
58
59
60
61
62
63
64
65
66
67
68
            return {"input_ids": torch.tensor(features), "labels": torch.tensor(features)}

    class DummyModel(nn.Module):
        def __init__(self):
            super().__init__()
            # Add some (unused) params otherwise DDP will complain.
            self.fc = nn.Linear(120, 80)

        def forward(self, input_ids, labels=None):
            if labels is not None:
                return torch.tensor(0.0, device=input_ids.device), input_ids
            else:
                return input_ids

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    class RegressionModel(nn.Module):
        def __init__(self, a=0, b=0, double_output=False):
            super().__init__()
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
            self.double_output = double_output
            self.config = None

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
            loss = nn.functional.mse_loss(y, labels)
            return (loss, y, y) if self.double_output else (loss, y)

    class SampleIterableDataset(IterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)

        def __iter__(self):
            for i in range(len(self.dataset)):
                yield self.dataset[i]

    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

    class RegressionDataset:
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            np.random.seed(seed)
            self.label_names = ["labels"] if label_names is None else label_names
            self.length = length
            self.x = np.random.normal(size=(length,)).astype(np.float32)
            self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
            self.ys = [y.astype(np.float32) for y in self.ys]

        def __len__(self):
            return self.length

        def __getitem__(self, i):
            result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
            result["input_x"] = self.x[i]
            return result

119

120
121
122
class TestTrainerDistributedNeuronCore(TestCasePlus):
    @require_torch_neuroncore
    def test_trainer(self):
123
        distributed_args = f"""--nproc_per_node=2
124
125
126
127
128
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
129
        cmd = ["torchrun"] + distributed_args + args
130
131
132
133
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


134
135
136
137
138
139
140
141
142
143
144
145
146
147
class TestTrainerDistributedNPU(TestCasePlus):
    @require_torch_npu
    def test_trainer(self):
        distributed_args = f"""--nproc_per_node=2
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
        cmd = ["torchrun"] + distributed_args + args
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


148
class TestTrainerDistributed(TestCasePlus):
149
    @require_torch_multi_gpu
150
    def test_trainer(self):
151
        distributed_args = f"""--nproc_per_node={torch.cuda.device_count()}
152
            --master_port={get_torch_dist_unique_port()}
153
154
155
156
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
157
        cmd = ["torchrun"] + distributed_args + args
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


@require_torch_multi_xpu
class TestTrainerDistributedXPU(TestCasePlus):
    def test_trainer(self):
        distributed_args = f"""--nproc_per_node={torch.xpu.device_count()}
            --master_port={get_torch_dist_unique_port()}
            {self.test_file_dir}/test_trainer_distributed.py
        """.split()
        output_dir = self.get_auto_remove_tmp_dir()
        args = f"--output_dir {output_dir}".split()
        cmd = ["torchrun"] + distributed_args + args
172
173
174
175
        execute_subprocess_async(cmd, env=self.get_env())
        # successful return here == success - any errors would have caused an error in the sub-call


176
if __name__ == "__main__":
177
178
    # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs:
    #
179
    # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py
180

181
    parser = HfArgumentParser((TrainingArguments,))
Sylvain Gugger's avatar
Sylvain Gugger committed
182
    training_args = parser.parse_args_into_dataclasses()[0]
183
184

    logger.warning(
185
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
186
        f"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}"
187
188
    )

189
190
    # Essentially, what we want to verify in the distributed case is that we get all samples back,
    # in the right order. (this is crucial for prediction for instance)
191
192
193
194
195
196
    for dataset_length in [101, 40, 7]:
        dataset = DummyDataset(dataset_length)

        def compute_metrics(p: EvalPrediction) -> Dict:
            sequential = list(range(len(dataset)))
            success = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential
197
198
199
200
201
            if not success and training_args.local_rank == 0:
                logger.warning(
                    "Predictions and/or labels do not match expected results:\n  - predictions: "
                    f"{p.predictions.tolist()}\n  - labels: {p.label_ids.tolist()}\n  - expected: {sequential}"
                )
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
            return {"success": success}

        trainer = Trainer(
            model=DummyModel(),
            args=training_args,
            data_collator=DummyDataCollator(),
            eval_dataset=dataset,
            compute_metrics=compute_metrics,
        )
        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
219
        if p.metrics["test_success"] is not True:
220
221
222
            logger.error(p.metrics)
            exit(1)

223
        trainer.args.eval_accumulation_steps = 2
224
225
226
227
228
229
230
231
232

        metrics = trainer.evaluate()
        logger.info(metrics)
        if metrics["eval_success"] is not True:
            logger.error(metrics)
            exit(1)

        p = trainer.predict(dataset)
        logger.info(p.metrics)
233
        if p.metrics["test_success"] is not True:
234
235
236
            logger.error(p.metrics)
            exit(1)

237
        trainer.args.eval_accumulation_steps = None
238
239
240
241
242
243

    # Check that `dispatch_batches=False` will work on a finite iterable dataset

    train_dataset = FiniteIterableDataset(label_names=["labels", "extra"], length=1)

    model = RegressionModel()
244
245
246
    training_args.per_device_train_batch_size = 1
    training_args.max_steps = 1
    training_args.dispatch_batches = False
247
248
    trainer = Trainer(model, training_args, train_dataset=train_dataset)
    trainer.train()