modeling.py 67.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21
22

import copy
import json
import logging
thomwolf's avatar
thomwolf committed
23
24
25
26
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
from torch import nn
30
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
31

32
from .file_utils import cached_path
33
from .model_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
34
35
36
37

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
38
39
40
41
42
43
44
45
46
47
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
49
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
50
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
51
52
53
54
55
56
57
58
59
60
61
62
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
63
64
65
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
66
67
}

thomwolf's avatar
thomwolf committed
68

69
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
70
71
    """ Load tf checkpoints in a pytorch model
    """
72
73
74
75
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
76
    except ImportError:
77
78
79
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
96
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
111
112
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
113
            else:
114
115
116
117
118
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
136
137
138
139
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
140
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147
148
149
150
151
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


152
class BertConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
153
154
    """Configuration class to store the configuration of a `BertModel`.
    """
155
156
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
168
                 initializer_range=0.02,
169
170
                 layer_norm_eps=1e-12,
                 finetuning_task=None):
thomwolf's avatar
thomwolf committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
194
            layer_norm_eps: The epsilon used by LayerNorm.
195
            finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
196
        """
thomwolf's avatar
thomwolf committed
197
198
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
199
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
215
            self.layer_norm_eps = layer_norm_eps
216
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
217
218
219
220
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

221

222
223
224
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
225
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
240
241
242
243
244
245

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
246
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
247
248
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
249
250
251

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
252
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
273
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
274
275
276
277
278
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
279
        self.output_attentions = output_attentions
280
281
282
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

298
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

320
321
322
323
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
324
        context_layer = torch.matmul(attention_probs, value_layer)
325
326
327
328
        if self.keep_multihead_output:
            self.multihead_output = context_layer
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
329
330
331
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
thomwolf's avatar
thomwolf committed
332
333
        if self.output_attentions:
            return attention_probs, context_layer
334
        return context_layer
thomwolf's avatar
thomwolf committed
335
336
337
338
339
340


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
341
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
342
343
344
345
346
347
348
349
350
351
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
352
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
353
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
354
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
355
356
        self.self = BertSelfAttention(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
357
358
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
359
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
360
361
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
362
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
370
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
371
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
372
373
374
375
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

376
377
    def forward(self, input_tensor, attention_mask, head_mask=None):
        self_output = self.self(input_tensor, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
378
379
        if self.output_attentions:
            attentions, self_output = self_output
thomwolf's avatar
thomwolf committed
380
        attention_output = self.output(self_output, input_tensor)
thomwolf's avatar
thomwolf committed
381
382
        if self.output_attentions:
            return attentions, attention_output
thomwolf's avatar
thomwolf committed
383
384
385
386
387
388
389
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
390
391
392
393
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
394
395
396
397
398
399
400
401
402
403
404

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
405
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
406
407
408
409
410
411
412
413
414
415
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
416
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
417
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
418
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
419
420
        self.attention = BertAttention(config, output_attentions=output_attentions,
                                               keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
421
422
423
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

424
425
    def forward(self, hidden_states, attention_mask, head_mask=None):
        attention_output = self.attention(hidden_states, attention_mask, head_mask)
thomwolf's avatar
thomwolf committed
426
427
        if self.output_attentions:
            attentions, attention_output = attention_output
thomwolf's avatar
thomwolf committed
428
429
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
430
431
        if self.output_attentions:
            return attentions, layer_output
thomwolf's avatar
thomwolf committed
432
433
434
435
        return layer_output


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
436
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
437
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
438
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
439
440
        layer = BertLayer(config, output_attentions=output_attentions,
                                  keep_multihead_output=keep_multihead_output)
441
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
442

443
    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True, head_mask=None):
thomwolf's avatar
thomwolf committed
444
        all_encoder_layers = []
thomwolf's avatar
thomwolf committed
445
        all_attentions = []
446
447
        for i, layer_module in enumerate(self.layer):
            hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
thomwolf's avatar
thomwolf committed
448
449
450
            if self.output_attentions:
                attentions, hidden_states = hidden_states
                all_attentions.append(attentions)
thomwolf's avatar
thomwolf committed
451
452
453
454
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
thomwolf's avatar
thomwolf committed
455
456
        if self.output_attentions:
            return all_attentions, all_encoder_layers
thomwolf's avatar
thomwolf committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
479
480
481
482
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
483
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


543
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
544
545
546
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
547
548
549
550
551
552
553
554
    config_class = BertConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
555

thomwolf's avatar
thomwolf committed
556
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
564
565
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
566
567
568
569
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
570
class BertModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
571
572
573
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
574
575
576
577
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
578
579
580
581

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
582
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
583
584
585
586
587
588
589
590
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
591
592
593
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

thomwolf's avatar
thomwolf committed
594
595
596
597
598
599
600

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
601
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
thomwolf's avatar
thomwolf committed
602
603
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
604
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
thomwolf's avatar
thomwolf committed
605
606
607
608
609
610

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
611
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
612

thomwolf's avatar
thomwolf committed
613
614
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
615
616
617
618
619

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
620
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
621
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
622
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
623
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
624
625
        self.encoder = BertEncoder(config, output_attentions=output_attentions,
                                           keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
626
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
627
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
628

thomwolf's avatar
thomwolf committed
629
630
631
632
633
634
635
636
637
638
639
640
641
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.encoder.layer]

642
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True, head_mask=None):
thomwolf's avatar
thomwolf committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
663
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
664
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
665
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
666
667
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
668
669
        if head_mask is not None:
            if head_mask.dim() == 1:
670
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
671
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
672
            elif head_mask.dim() == 2:
673
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
674
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
675
676
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
677

thomwolf's avatar
thomwolf committed
678
679
680
        embedding_output = self.embeddings(input_ids, token_type_ids)
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
681
682
                                      output_all_encoded_layers=output_all_encoded_layers,
                                      head_mask=head_mask)
thomwolf's avatar
thomwolf committed
683
684
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers
thomwolf's avatar
thomwolf committed
685
686
687
688
        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
thomwolf's avatar
thomwolf committed
689
690
        if self.output_attentions:
            return all_attentions, encoded_layers, pooled_output
thomwolf's avatar
thomwolf committed
691
692
693
        return encoded_layers, pooled_output


thomwolf's avatar
thomwolf committed
694
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
695
696
697
698
699
700
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
701
702
703
704
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
705
706
707
708

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
709
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
710
711
712
713
714
715
716
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
717
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
718
719
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
720
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
thomwolf's avatar
thomwolf committed
721
722
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
723
724
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
725
726
727
728
729
730
731

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
732
733
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
734
735
736
737
738
739

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
740
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
741

thomwolf's avatar
thomwolf committed
742
743
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
744
745
746
747
748

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
749
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
750
        super(BertForPreTraining, self).__init__(config)
751
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
752
753
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
754
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
755
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
756

757
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None, head_mask=None):
758
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
759
                                                   output_all_encoded_layers=False, head_mask=head_mask)
760
761
762
763
        if self.output_attentions:
            all_attentions, sequence_output, pooled_output = outputs
        else:
            sequence_output, pooled_output = outputs
thomwolf's avatar
thomwolf committed
764
765
766
767
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
768
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
769
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
770
771
            total_loss = masked_lm_loss + next_sentence_loss
            return total_loss
772
773
774
        elif self.output_attentions:
            return all_attentions, prediction_scores, seq_relationship_score
        return prediction_scores, seq_relationship_score
thomwolf's avatar
thomwolf committed
775
776


thomwolf's avatar
thomwolf committed
777
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
778
779
780
781
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
782
783
784
785
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
786
787
788
789

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
790
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
791
792
793
794
795
796
797
798
799
800
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
801
802
803
804
805
806
        `head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
807
808

    Outputs:
wlhgtc's avatar
wlhgtc committed
809
        if `masked_lm_labels` is  not `None`:
thomwolf's avatar
thomwolf committed
810
811
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
812
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
thomwolf's avatar
thomwolf committed
813
814
815
816
817
818

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
819
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
820

thomwolf's avatar
thomwolf committed
821
822
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
823
824
825
826
827

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
828
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
829
        super(BertForMaskedLM, self).__init__(config)
830
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
831
832
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
833
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
834
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
835

836
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
837
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
838
839
                                       output_all_encoded_layers=False,
                                       head_mask=head_mask)
840
841
842
843
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
844
845
846
847
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
848
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
849
            return masked_lm_loss
850
851
852
        elif self.output_attentions:
            return all_attentions, prediction_scores
        return prediction_scores
thomwolf's avatar
thomwolf committed
853
854


thomwolf's avatar
thomwolf committed
855
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
856
857
858
859
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
860
861
862
863
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
864
865
866
867

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
868
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
869
870
871
872
873
874
875
876
877
878
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
879
880
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
881
882
883
884
885
886

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
887
            Outputs the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
888
889
890
891
892
893

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
894
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
895

thomwolf's avatar
thomwolf committed
896
897
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
898
899
900
901
902

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
903
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
904
        super(BertForNextSentencePrediction, self).__init__(config)
905
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
906
907
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
908
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
909
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
910

911
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
912
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
913
914
                                     output_all_encoded_layers=False,
                                     head_mask=head_mask)
915
916
917
918
919
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
920
921
922

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
923
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
924
            return next_sentence_loss
925
926
927
        elif self.output_attentions:
            return all_attentions, seq_relationship_score
        return seq_relationship_score
thomwolf's avatar
thomwolf committed
928
929


thomwolf's avatar
thomwolf committed
930
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
931
932
933
934
935
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
936
937
938
939
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
940
941
942
943
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
944
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
945
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
946
947
948
949
950
951
952
953
954
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].
955
956
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
957
958
959
960
961

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
962
            Outputs the classification logits of shape [batch_size, num_labels].
thomwolf's avatar
thomwolf committed
963
964
965
966
967
968

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
969
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
970

thomwolf's avatar
thomwolf committed
971
972
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
973
974
975
976
977
978
979

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
980
    def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
981
        super(BertForSequenceClassification, self).__init__(config)
982
        self.output_attentions = output_attentions
983
        self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
984
985
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
986
987
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
thomwolf's avatar
thomwolf committed
988
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
989

990
991
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, head_mask=head_mask)
992
993
994
995
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
thomwolf's avatar
thomwolf committed
996
997
998
999
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
1000
1001
1002
1003
1004
1005
1006
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1007
            return loss
1008
1009
1010
        elif self.output_attentions:
            return all_attentions, logits
        return logits
1011
1012


thomwolf's avatar
thomwolf committed
1013
class BertForMultipleChoice(BertPreTrainedModel):
1014
1015
1016
1017
1018
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
1019
1020
1021
1022
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
1023
1024
1025
1026
1027
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1028
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1029
1030
1031
1032
1033
1034
1035
1036
1037
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
1038
1039
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1062
    def __init__(self, config, num_choices=2, output_attentions=False, keep_multihead_output=False):
1063
        super(BertForMultipleChoice, self).__init__(config)
1064
        self.output_attentions = output_attentions
1065
        self.num_choices = num_choices
thomwolf's avatar
thomwolf committed
1066
1067
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
1068
1069
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1070
        self.apply(self.init_weights)
1071

1072
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1073
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1074
1075
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1076
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False, head_mask=head_mask)
1077
1078
1079
1080
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
1081
1082
1083
1084
1085
1086
1087
1088
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            return loss
1089
1090
1091
        elif self.output_attentions:
            return all_attentions, reshaped_logits
        return reshaped_logits
1092
1093


thomwolf's avatar
thomwolf committed
1094
class BertForTokenClassification(BertPreTrainedModel):
1095
1096
1097
1098
1099
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
1100
1101
1102
1103
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
1104
1105
1106
1107
1108
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1109
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1110
1111
1112
1113
1114
1115
1116
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
thomwolf's avatar
thomwolf committed
1117
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
1118
            with indices selected in [0, ..., num_labels].
1119
1120
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
1121
1122
1123
1124
1125

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1126
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1144
    def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
1145
        super(BertForTokenClassification, self).__init__(config)
1146
        self.output_attentions = output_attentions
1147
        self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
1148
1149
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
1150
1151
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
thomwolf's avatar
thomwolf committed
1152
        self.apply(self.init_weights)
1153

1154
1155
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False, head_mask=head_mask)
1156
1157
1158
1159
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
1160
1161
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1162
1163
1164

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1165
1166
1167
1168
1169
1170
1171
1172
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1173
            return loss
1174
1175
1176
        elif self.output_attentions:
            return all_attentions, logits
        return logits
thomwolf's avatar
thomwolf committed
1177
1178


thomwolf's avatar
thomwolf committed
1179
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1180
1181
1182
1183
1184
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
1185
1186
1187
1188
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
1189
1190
1191
1192

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1193
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
1207
1208
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
1209
1210
1211
1212
1213
1214

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
1215
            position tokens of shape [batch_size, sequence_length].
thomwolf's avatar
thomwolf committed
1216
1217
1218
1219
1220
1221

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1222
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1223

thomwolf's avatar
thomwolf committed
1224
1225
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1226
1227
1228
1229
1230

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1231
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
1232
        super(BertForQuestionAnswering, self).__init__(config)
1233
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
1234
1235
        self.bert = BertModel(config, output_attentions=output_attentions,
                                      keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
1236
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
thomwolf's avatar
thomwolf committed
1237
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1238

thomwolf's avatar
thomwolf committed
1239
1240
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
1241
1242
1243
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
                                                       output_all_encoded_layers=False,
                                                       head_mask=head_mask)
1244
1245
1246
1247
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
1269
1270
1271
        elif self.output_attentions:
            return all_attentions, start_logits, end_logits
        return start_logits, end_logits