modeling.py 62.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21
22

import copy
import json
import logging
thomwolf's avatar
thomwolf committed
23
24
25
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
26
27
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
28
29
import sys
from io import open
thomwolf's avatar
thomwolf committed
30
31
32
33
34

import torch
from torch import nn
from torch.nn import CrossEntropyLoss

35
from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME
thomwolf's avatar
thomwolf committed
36
37
38
39
40
41
42

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
thomwolf's avatar
thomwolf committed
43
44
45
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
thomwolf's avatar
thomwolf committed
46
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
47
    'bert-base-german-cased': "https://int-deepset-models-bert.s3.eu-central-1.amazonaws.com/pytorch/bert-base-german-cased.tar.gz",
thomwolf's avatar
thomwolf committed
48
}
49
BERT_CONFIG_NAME = 'bert_config.json'
50
TF_WEIGHTS_NAME = 'model.ckpt'
thomwolf's avatar
thomwolf committed
51

52
53
54
def load_tf_weights_in_bert(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
55
56
57
58
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
59
    except ImportError:
60
61
62
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
79
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
80
81
82
83
84
85
86
87
88
89
90
91
92
93
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
94
95
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
96
            else:
97
98
99
100
101
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
119
120
121
122
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
123
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


class BertConfig(object):
    """Configuration class to store the configuration of a `BertModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
149
150
                 initializer_range=0.02,
                 layer_norm_eps=1e-12):
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
174
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
175
        """
thomwolf's avatar
thomwolf committed
176
177
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
178
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
194
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
210
        with open(json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

226
227
228
229
230
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

231
232
233
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
234
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
249
250
251
252
253
254

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
255
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
256
257
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
258
259
260

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
261
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
282
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
283
284
285
286
287
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
288
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
thomwolf's avatar
thomwolf committed
330
331
        if self.output_attentions:
            return attention_probs, context_layer
332
        return context_layer
thomwolf's avatar
thomwolf committed
333
334
335
336
337
338


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
339
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
340
341
342
343
344
345
346
347
348
349
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
350
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
351
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
352
353
        self.output_attentions = output_attentions
        self.self = BertSelfAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
354
355
356
357
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
thomwolf's avatar
thomwolf committed
358
359
        if self.output_attentions:
            attentions, self_output = self_output
thomwolf's avatar
thomwolf committed
360
        attention_output = self.output(self_output, input_tensor)
thomwolf's avatar
thomwolf committed
361
362
        if self.output_attentions:
            return attentions, attention_output
thomwolf's avatar
thomwolf committed
363
364
365
366
367
368
369
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
370
371
372
373
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
374
375
376
377
378
379
380
381
382
383
384

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
385
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
386
387
388
389
390
391
392
393
394
395
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
396
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
397
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
398
399
        self.output_attentions = output_attentions
        self.attention = BertAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
400
401
402
403
404
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
405
406
        if self.output_attentions:
            attentions, attention_output = attention_output
thomwolf's avatar
thomwolf committed
407
408
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
409
410
        if self.output_attentions:
            return attentions, layer_output
thomwolf's avatar
thomwolf committed
411
412
413
414
        return layer_output


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
415
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
416
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
417
418
        self.output_attentions = output_attentions
        layer = BertLayer(config, output_attentions=output_attentions)
419
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
420
421
422

    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
        all_encoder_layers = []
thomwolf's avatar
thomwolf committed
423
        all_attentions = []
thomwolf's avatar
thomwolf committed
424
425
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
426
427
428
            if self.output_attentions:
                attentions, hidden_states = hidden_states
                all_attentions.append(attentions)
thomwolf's avatar
thomwolf committed
429
430
431
432
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
thomwolf's avatar
thomwolf committed
433
434
        if self.output_attentions:
            return all_attentions, all_encoder_layers
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
457
458
459
460
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
461
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


thomwolf's avatar
thomwolf committed
521
class BertPreTrainedModel(nn.Module):
thomwolf's avatar
thomwolf committed
522
523
524
525
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
526
        super(BertPreTrainedModel, self).__init__()
thomwolf's avatar
thomwolf committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_bert_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
544
545
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
546
547
548
549
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
550
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
551
        """
thomwolf's avatar
thomwolf committed
552
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
thomwolf's avatar
thomwolf committed
553
        Download and cache the pre-trained model file if needed.
554

thomwolf's avatar
thomwolf committed
555
        Params:
thomwolf's avatar
thomwolf committed
556
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
557
558
559
560
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `bert-base-uncased`
                    . `bert-large-uncased`
                    . `bert-base-cased`
561
562
563
                    . `bert-large-cased`
                    . `bert-base-multilingual-uncased`
                    . `bert-base-multilingual-cased`
thomwolf's avatar
thomwolf committed
564
565
566
567
                    . `bert-base-chinese`
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
568
569
570
571
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
572
573
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
thomwolf's avatar
thomwolf committed
574
575
576
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
577
578
579
580
581
582
583
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
584
585
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
586
        else:
thomwolf's avatar
thomwolf committed
587
            archive_file = pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
588
589
        # redirect to the cache, if necessary
        try:
590
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
591
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
592
593
594
595
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
thomwolf's avatar
thomwolf committed
596
                    pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
597
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
598
                    archive_file))
thomwolf's avatar
thomwolf committed
599
600
601
602
603
604
605
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
            logger.info("loading archive file {} from cache at {}".format(
                archive_file, resolved_archive_file))
        tempdir = None
606
        if os.path.isdir(resolved_archive_file) or from_tf:
thomwolf's avatar
thomwolf committed
607
608
609
610
611
612
613
614
615
616
617
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
                resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
618
619
620
        if not os.path.exists(config_file):
            # Backward compatibility with old naming format
            config_file = os.path.join(serialization_dir, BERT_CONFIG_NAME)
thomwolf's avatar
thomwolf committed
621
622
623
624
        config = BertConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
625
        if state_dict is None and not from_tf:
626
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
627
            state_dict = torch.load(weights_path, map_location='cpu')
628
629
630
631
632
633
634
635
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint
            weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
            return load_tf_weights_in_bert(model, weights_path)
        # Load from a PyTorch state_dict
636
637
638
639
640
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
thomwolf's avatar
thomwolf committed
641
                new_key = key.replace('gamma', 'weight')
642
            if 'beta' in key:
thomwolf's avatar
thomwolf committed
643
                new_key = key.replace('beta', 'bias')
644
645
646
647
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
thomwolf's avatar
thomwolf committed
648
            state_dict[new_key] = state_dict.pop(old_key)
649

thomwolf's avatar
thomwolf committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
thomwolf's avatar
thomwolf committed
666
667
668
        start_prefix = ''
        if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
            start_prefix = 'bert.'
thomwolf's avatar
update  
thomwolf committed
669
        load(model, prefix=start_prefix)
thomwolf's avatar
thomwolf committed
670
671
672
673
674
675
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
thomwolf's avatar
thomwolf committed
676
677
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
thomwolf's avatar
thomwolf committed
678
                               model.__class__.__name__, "\n\t".join(error_msgs)))
thomwolf's avatar
thomwolf committed
679
680
681
        return model


thomwolf's avatar
thomwolf committed
682
class BertModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
707
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
thomwolf's avatar
thomwolf committed
708
709
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
710
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
thomwolf's avatar
thomwolf committed
711
712
713
714
715
716

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
717
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
718

thomwolf's avatar
thomwolf committed
719
720
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
721
722
723
724
725

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
726
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
727
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
728
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
729
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
730
        self.encoder = BertEncoder(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
        self.pooler = BertPooler(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids, token_type_ids)
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
                                      output_all_encoded_layers=output_all_encoded_layers)
thomwolf's avatar
thomwolf committed
759
760
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers
thomwolf's avatar
thomwolf committed
761
762
763
764
        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
thomwolf's avatar
thomwolf committed
765
766
        if self.output_attentions:
            return all_attentions, encoded_layers, pooled_output
thomwolf's avatar
thomwolf committed
767
768
769
        return encoded_layers, pooled_output


thomwolf's avatar
thomwolf committed
770
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
790
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
791
792
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
793
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
thomwolf's avatar
thomwolf committed
794
795
796
797
798
799
800
801
802
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
803
804
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
805
806
807
808
809
810

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
811
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
812

thomwolf's avatar
thomwolf committed
813
814
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
815
816
817
818
819

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
820
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
821
        super(BertForPreTraining, self).__init__(config)
822
823
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
824
825
826
827
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None):
828
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
829
                                                   output_all_encoded_layers=False)
830
831
832
833
        if self.output_attentions:
            all_attentions, sequence_output, pooled_output = outputs
        else:
            sequence_output, pooled_output = outputs
thomwolf's avatar
thomwolf committed
834
835
836
837
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
838
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
839
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
840
841
            total_loss = masked_lm_loss + next_sentence_loss
            return total_loss
842
843
844
        elif self.output_attentions:
            return all_attentions, prediction_scores, seq_relationship_score
        return prediction_scores, seq_relationship_score
thomwolf's avatar
thomwolf committed
845
846


thomwolf's avatar
thomwolf committed
847
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
wlhgtc's avatar
wlhgtc committed
870
        if `masked_lm_labels` is  not `None`:
thomwolf's avatar
thomwolf committed
871
872
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
873
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
thomwolf's avatar
thomwolf committed
874
875
876
877
878
879

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
880
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
881

thomwolf's avatar
thomwolf committed
882
883
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
884
885
886
887
888

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
889
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
890
        super(BertForMaskedLM, self).__init__(config)
891
892
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
893
894
895
896
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None):
897
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
898
                                       output_all_encoded_layers=False)
899
900
901
902
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
903
904
905
906
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
907
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
908
            return masked_lm_loss
909
910
911
        elif self.output_attentions:
            return all_attentions, prediction_scores
        return prediction_scores
thomwolf's avatar
thomwolf committed
912
913


thomwolf's avatar
thomwolf committed
914
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
941
            Outputs the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
942
943
944
945
946
947

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
948
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
949

thomwolf's avatar
thomwolf committed
950
951
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
952
953
954
955
956

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
957
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
958
        super(BertForNextSentencePrediction, self).__init__(config)
959
960
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
961
962
963
964
        self.cls = BertOnlyNSPHead(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None):
965
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
966
                                     output_all_encoded_layers=False)
967
968
969
970
971
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
972
973
974

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
975
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
976
            return next_sentence_loss
977
978
979
        elif self.output_attentions:
            return all_attentions, seq_relationship_score
        return seq_relationship_score
thomwolf's avatar
thomwolf committed
980
981


thomwolf's avatar
thomwolf committed
982
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
983
984
985
986
987
988
989
990
991
992
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
993
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
thomwolf's avatar
thomwolf committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1009
            Outputs the classification logits of shape [batch_size, num_labels].
thomwolf's avatar
thomwolf committed
1010
1011
1012
1013
1014
1015

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1016
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1017

thomwolf's avatar
thomwolf committed
1018
1019
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1020
1021
1022
1023
1024
1025
1026

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1027
    def __init__(self, config, num_labels=2, output_attentions=False):
thomwolf's avatar
thomwolf committed
1028
        super(BertForSequenceClassification, self).__init__(config)
1029
        self.output_attentions = output_attentions
1030
        self.num_labels = num_labels
1031
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1032
1033
1034
1035
1036
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
1037
1038
1039
1040
1041
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
thomwolf's avatar
thomwolf committed
1042
1043
1044
1045
1046
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1047
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1048
            return loss
1049
1050
1051
        elif self.output_attentions:
            return all_attentions, logits
        return logits
1052
1053


thomwolf's avatar
thomwolf committed
1054
class BertForMultipleChoice(BertPreTrainedModel):
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1098
    def __init__(self, config, num_choices=2, output_attentions=False):
1099
        super(BertForMultipleChoice, self).__init__(config)
1100
        self.output_attentions = output_attentions
1101
        self.num_choices = num_choices
1102
        self.bert = BertModel(config, output_attentions=output_attentions)
1103
1104
1105
1106
1107
1108
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1109
1110
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1111
1112
1113
1114
1115
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
1116
1117
1118
1119
1120
1121
1122
1123
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            return loss
1124
1125
1126
        elif self.output_attentions:
            return all_attentions, reshaped_logits
        return reshaped_logits
1127
1128


thomwolf's avatar
thomwolf committed
1129
class BertForTokenClassification(BertPreTrainedModel):
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
thomwolf's avatar
thomwolf committed
1149
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
1150
1151
1152
1153
1154
1155
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1156
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1174
    def __init__(self, config, num_labels=2, output_attentions=False):
1175
        super(BertForTokenClassification, self).__init__(config)
1176
        self.output_attentions = output_attentions
1177
        self.num_labels = num_labels
1178
        self.bert = BertModel(config, output_attentions=output_attentions)
1179
1180
1181
1182
1183
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
1184
1185
1186
1187
1188
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
1189
1190
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1191
1192
1193

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1194
1195
1196
1197
1198
1199
1200
1201
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1202
            return loss
1203
1204
1205
        elif self.output_attentions:
            return all_attentions, logits
        return logits
thomwolf's avatar
thomwolf committed
1206
1207


thomwolf's avatar
thomwolf committed
1208
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1209
1210
1211
1212
1213
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
1214
        `config`: a BertConfig class instance with the configuration to build a new model.
thomwolf's avatar
thomwolf committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
1239
            position tokens of shape [batch_size, sequence_length].
thomwolf's avatar
thomwolf committed
1240
1241
1242
1243
1244
1245

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1246
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1247

thomwolf's avatar
thomwolf committed
1248
1249
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1250
1251
1252
1253
1254

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1255
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
1256
        super(BertForQuestionAnswering, self).__init__(config)
1257
1258
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1259
1260
1261
1262
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None):
1263
1264
1265
1266
1267
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
1289
1290
1291
        elif self.output_attentions:
            return all_attentions, start_logits, end_logits
        return start_logits, end_logits