test_modeling_marian.py 20.1 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
""" Testing suite for the PyTorch Marian model. """
16
17


18
import tempfile
19
20
import unittest

21
from transformers import is_torch_available
22
from transformers.file_utils import cached_property
23
from transformers.hf_api import HfApi
24
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
25

26
27
28
from .test_configuration_common import ConfigTester
from .test_generation_utils import GenerationTesterMixin
from .test_modeling_common import ModelTesterMixin, ids_tensor
29

30
31
32

if is_torch_available():
    import torch
33

34
35
36
37
38
39
40
41
42
    from transformers import (
        AutoConfig,
        AutoModelWithLMHead,
        AutoTokenizer,
        MarianConfig,
        MarianModel,
        MarianMTModel,
        TranslationPipeline,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    from transformers.models.marian.convert_marian_to_pytorch import (
44
        ORG_NAME,
45
46
47
        convert_hf_name_to_opus_name,
        convert_opus_name_to_hf_name,
    )
48
49
50
51
52
53
54
55
56
    from transformers.models.marian.modeling_marian import MarianDecoder, MarianEncoder, shift_tokens_right


def prepare_marian_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
57
58
    head_mask=None,
    decoder_head_mask=None,
59
60
61
62
63
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
64
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
65
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
66
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
67
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
68
69
70
71
72
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
73
74
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    }


@require_torch
class MarianModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        decoder_start_token_id=3,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.decoder_start_token_id = decoder_start_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
124
        )
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = MarianConfig(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )
        inputs_dict = prepare_marian_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
148
149

    def prepare_config_and_inputs_for_common(self):
150
151
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict
152

153
154
155
156
    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = MarianModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
157
        head_mask = inputs_dict["head_mask"]
158

159
        # first forward pass
160
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = MarianModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = MarianEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = MarianDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)


@require_torch
class MarianModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (MarianModel, MarianMTModel) if is_torch_available() else ()
    all_generative_model_classes = (MarianMTModel,) if is_torch_available() else ()
    is_encoder_decoder = True
    test_pruning = False
    test_missing_keys = False
227
228

    def setUp(self):
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        self.model_tester = MarianModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MarianConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])

    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)

    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = MarianMTModel(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return torch.tensor(tok_lst, dtype=torch.long, device=torch_device)
285
286


287
288
class ModelManagementTests(unittest.TestCase):
    @slow
Lysandre Debut's avatar
Lysandre Debut committed
289
    @require_torch
290
    def test_model_names(self):
291
        model_list = HfApi().model_list()
292
293
294
295
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(ORG_NAME)]
        bad_model_ids = [mid for mid in model_ids if "+" in model_ids]
        self.assertListEqual([], bad_model_ids)
        self.assertGreater(len(model_ids), 500)
296
297
298


@require_torch
299
300
@require_sentencepiece
@require_tokenizers
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
class MarianIntegrationTest(unittest.TestCase):
    src = "en"
    tgt = "de"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
        "Tom asked his teacher for advice.",
        "That's how I would do it.",
        "Tom really admired Mary's courage.",
        "Turn around and close your eyes.",
    ]
    expected_text = [
        "Ich bin ein kleiner Frosch.",
        "Jetzt kann ich die 100 Wörter des Deutschen vergessen, die ich kenne.",
        "Tom bat seinen Lehrer um Rat.",
        "So würde ich das machen.",
        "Tom bewunderte Marias Mut wirklich.",
        "Drehen Sie sich um und schließen Sie die Augen.",
    ]
    # ^^ actual C++ output differs slightly: (1) des Deutschen removed, (2) ""-> "O", (3) tun -> machen

322
323
    @classmethod
    def setUpClass(cls) -> None:
324
        cls.model_name = f"Helsinki-NLP/opus-mt-{cls.src}-{cls.tgt}"
325
326
        return cls

327
    @cached_property
328
    def tokenizer(self):
329
330
331
332
333
334
        return AutoTokenizer.from_pretrained(self.model_name)

    @property
    def eos_token_id(self) -> int:
        return self.tokenizer.eos_token_id

335
336
    @cached_property
    def model(self):
337
338
339
340
341
342
        model: MarianMTModel = AutoModelWithLMHead.from_pretrained(self.model_name).to(torch_device)
        c = model.config
        self.assertListEqual(c.bad_words_ids, [[c.pad_token_id]])
        self.assertEqual(c.max_length, 512)
        self.assertEqual(c.decoder_start_token_id, c.pad_token_id)

343
344
345
346
347
        if torch_device == "cuda":
            return model.half()
        else:
            return model

348
349
350
351
352
    def _assert_generated_batch_equal_expected(self, **tokenizer_kwargs):
        generated_words = self.translate_src_text(**tokenizer_kwargs)
        self.assertListEqual(self.expected_text, generated_words)

    def translate_src_text(self, **tokenizer_kwargs):
353
354
355
        model_inputs = self.tokenizer.prepare_seq2seq_batch(
            src_texts=self.src_text, return_tensors="pt", **tokenizer_kwargs
        ).to(torch_device)
356
        self.assertEqual(self.model.device, model_inputs.input_ids.device)
357
        generated_ids = self.model.generate(
358
            model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, max_length=128
359
360
361
362
363
        )
        generated_words = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        return generated_words


364
365
@require_sentencepiece
@require_tokenizers
366
class TestMarian_EN_DE_More(MarianIntegrationTest):
367
368
    @slow
    def test_forward(self):
369
        src, tgt = ["I am a small frog"], ["Ich bin ein kleiner Frosch."]
370
        expected_ids = [38, 121, 14, 697, 38848, 0]
371

372
373
374
        model_inputs: dict = self.tokenizer.prepare_seq2seq_batch(src, tgt_texts=tgt, return_tensors="pt").to(
            torch_device
        )
Sam Shleifer's avatar
Sam Shleifer committed
375

376
        self.assertListEqual(expected_ids, model_inputs.input_ids[0].tolist())
377
378
379
380

        desired_keys = {
            "input_ids",
            "attention_mask",
Sam Shleifer's avatar
Sam Shleifer committed
381
            "labels",
382
383
        }
        self.assertSetEqual(desired_keys, set(model_inputs.keys()))
384
385
386
        model_inputs["decoder_input_ids"] = shift_tokens_right(
            model_inputs.labels, self.tokenizer.pad_token_id, self.model.config.decoder_start_token_id
        )
Sam Shleifer's avatar
Sam Shleifer committed
387
388
        model_inputs["return_dict"] = True
        model_inputs["use_cache"] = False
389
        with torch.no_grad():
Sam Shleifer's avatar
Sam Shleifer committed
390
391
            outputs = self.model(**model_inputs)
        max_indices = outputs.logits.argmax(-1)
392
        self.tokenizer.batch_decode(max_indices)
393

394
395
    def test_unk_support(self):
        t = self.tokenizer
396
        ids = t.prepare_seq2seq_batch(["||"], return_tensors="pt").to(torch_device).input_ids[0].tolist()
397
398
399
        expected = [t.unk_token_id, t.unk_token_id, t.eos_token_id]
        self.assertEqual(expected, ids)

400
    def test_pad_not_split(self):
401
402
403
404
405
        input_ids_w_pad = (
            self.tokenizer.prepare_seq2seq_batch(["I am a small frog <pad>"], return_tensors="pt")
            .input_ids[0]
            .tolist()
        )
406
        expected_w_pad = [38, 121, 14, 697, 38848, self.tokenizer.pad_token_id, 0]  # pad
407
        self.assertListEqual(expected_w_pad, input_ids_w_pad)
408
409
410
411
412
413
414
415
416
417

    @slow
    def test_batch_generation_en_de(self):
        self._assert_generated_batch_equal_expected()

    def test_auto_config(self):
        config = AutoConfig.from_pretrained(self.model_name)
        self.assertIsInstance(config, MarianConfig)


418
419
@require_sentencepiece
@require_tokenizers
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
class TestMarian_EN_FR(MarianIntegrationTest):
    src = "en"
    tgt = "fr"
    src_text = [
        "I am a small frog.",
        "Now I can forget the 100 words of german that I know.",
    ]
    expected_text = [
        "Je suis une petite grenouille.",
        "Maintenant, je peux oublier les 100 mots d'allemand que je connais.",
    ]

    @slow
    def test_batch_generation_en_fr(self):
        self._assert_generated_batch_equal_expected()


437
438
@require_sentencepiece
@require_tokenizers
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
class TestMarian_FR_EN(MarianIntegrationTest):
    src = "fr"
    tgt = "en"
    src_text = [
        "Donnez moi le micro.",
        "Tom et Mary étaient assis à une table.",  # Accents
    ]
    expected_text = [
        "Give me the microphone.",
        "Tom and Mary were sitting at a table.",
    ]

    @slow
    def test_batch_generation_fr_en(self):
        self._assert_generated_batch_equal_expected()


456
457
@require_sentencepiece
@require_tokenizers
458
459
460
461
class TestMarian_RU_FR(MarianIntegrationTest):
    src = "ru"
    tgt = "fr"
    src_text = ["Он показал мне рукопись своей новой пьесы."]
462
    expected_text = ["Il m'a montré le manuscrit de sa nouvelle pièce."]
463

464
    @slow
465
466
467
468
    def test_batch_generation_ru_fr(self):
        self._assert_generated_batch_equal_expected()


469
470
@require_sentencepiece
@require_tokenizers
471
class TestMarian_MT_EN(MarianIntegrationTest):
472
473
    """Cover low resource/high perplexity setting. This breaks without adjust_logits_generation overwritten"""

474
475
    src = "mt"
    tgt = "en"
476
477
    src_text = ["Billi messu b'mod ġentili, Ġesù fejjaq raġel li kien milqut bil - marda kerha tal - ġdiem."]
    expected_text = ["Touching gently, Jesus healed a man who was affected by the sad disease of leprosy."]
478

479
    @slow
480
481
482
483
    def test_batch_generation_mt_en(self):
        self._assert_generated_batch_equal_expected()


484
485
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
486
487
488
class TestMarian_en_zh(MarianIntegrationTest):
    src = "en"
    tgt = "zh"
489
490
491
492
493
494
495
496
    src_text = ["My name is Wolfgang and I live in Berlin"]
    expected_text = ["我叫沃尔夫冈 我住在柏林"]

    @slow
    def test_batch_generation_eng_zho(self):
        self._assert_generated_batch_equal_expected()


497
498
@require_sentencepiece
@require_tokenizers
499
500
class TestMarian_en_ROMANCE(MarianIntegrationTest):
    """Multilingual on target side."""
501

502
503
504
505
506
507
508
509
510
511
512
513
    src = "en"
    tgt = "ROMANCE"
    src_text = [
        ">>fr<< Don't spend so much time watching TV.",
        ">>pt<< Your message has been sent.",
        ">>es<< He's two years older than me.",
    ]
    expected_text = [
        "Ne passez pas autant de temps à regarder la télé.",
        "A sua mensagem foi enviada.",
        "Es dos años más viejo que yo.",
    ]
514

515
516
    @slow
    def test_batch_generation_en_ROMANCE_multi(self):
517
518
        self._assert_generated_batch_equal_expected()

519
    @slow
520
    def test_pipeline(self):
521
522
        device = 0 if torch_device == "cuda" else -1
        pipeline = TranslationPipeline(self.model, self.tokenizer, framework="pt", device=device)
523
524
525
        output = pipeline(self.src_text)
        self.assertEqual(self.expected_text, [x["translation_text"] for x in output])

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

@require_torch
class TestConversionUtils(unittest.TestCase):
    def test_renaming_multilingual(self):
        old_names = [
            "opus-mt-cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "opus-mt-cmn+cn-fi",  # no group
            "opus-mt-en-de",  # standard name
            "opus-mt-en-de",  # standard name
        ]
        expected = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        self.assertListEqual(expected, [convert_opus_name_to_hf_name(x) for x in old_names])

    def test_undoing_renaming(self):
        hf_names = ["opus-mt-ZH-fi", "opus-mt-cmn_cn-fi", "opus-mt-en-de", "opus-mt-en-de"]
        converted_opus_names = [convert_hf_name_to_opus_name(x) for x in hf_names]
        expected_opus_names = [
            "cmn+cn+yue+ze_zh+zh_cn+zh_CN+zh_HK+zh_tw+zh_TW+zh_yue+zhs+zht+zh-fi",
            "cmn+cn-fi",
            "en-de",  # standard name
            "en-de",
        ]
        self.assertListEqual(expected_opus_names, converted_opus_names)