test_modeling_blenderbot.py 12.3 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
# coding=utf-8
2
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
Sam Shleifer's avatar
Sam Shleifer committed
3
#
Sylvain Gugger's avatar
Sylvain Gugger committed
4
# Licensed under the Apache License, Version 2.0 (the "License");
Sam Shleifer's avatar
Sam Shleifer committed
5
6
7
8
9
10
11
12
13
14
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
18
""" Testing suite for the PyTorch Blenderbot model. """


import tempfile
Sam Shleifer's avatar
Sam Shleifer committed
19
20
21
22
import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
23
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Sam Shleifer's avatar
Sam Shleifer committed
24
25

from .test_configuration_common import ConfigTester
26
from .test_generation_utils import GenerationTesterMixin
Sam Shleifer's avatar
Sam Shleifer committed
27
28
29
30
31
32
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

33
34
35
36
37
38
39
40
41
42
    from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer
    from transformers.models.blenderbot.modeling_blenderbot import BlenderbotDecoder, BlenderbotEncoder


def prepare_blenderbot_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
43
44
    head_mask=None,
    decoder_head_mask=None,
45
46
47
48
49
):
    if attention_mask is None:
        attention_mask = input_ids.ne(config.pad_token_id)
    if decoder_attention_mask is None:
        decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
50
    if head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
51
        head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device)
52
    if decoder_head_mask is None:
Patrick von Platen's avatar
Patrick von Platen committed
53
        decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device)
54
55
56
57
58
    return {
        "input_ids": input_ids,
        "decoder_input_ids": decoder_input_ids,
        "attention_mask": attention_mask,
        "decoder_attention_mask": attention_mask,
59
60
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
61
    }
Sam Shleifer's avatar
Sam Shleifer committed
62
63
64
65


@require_torch
class BlenderbotModelTester:
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=16,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=4,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
    ):
Sam Shleifer's avatar
Sam Shleifer committed
86
        self.parent = parent
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(
            3,
        )
        input_ids[:, -1] = self.eos_token_id  # Eos Token

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = BlenderbotConfig(
Sam Shleifer's avatar
Sam Shleifer committed
114
            vocab_size=self.vocab_size,
115
            d_model=self.hidden_size,
Sam Shleifer's avatar
Sam Shleifer committed
116
117
118
119
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
120
121
122
123
124
125
126
127
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
Sam Shleifer's avatar
Sam Shleifer committed
128
        )
129
130
        inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
        return config, inputs_dict
Sam Shleifer's avatar
Sam Shleifer committed
131
132

    def prepare_config_and_inputs_for_common(self):
133
134
135
136
137
138
139
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval()
        input_ids = inputs_dict["input_ids"]
        attention_mask = inputs_dict["attention_mask"]
140
        head_mask = inputs_dict["head_mask"]
141
142

        # first forward pass
143
        outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

        output, past_key_values = outputs.to_tuple()

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[
            "last_hidden_state"
        ]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2))

    def check_encoder_decoder_model_standalone(self, config, inputs_dict):
        model = BlenderbotModel(config=config).to(torch_device).eval()
        outputs = model(**inputs_dict)

        encoder_last_hidden_state = outputs.encoder_last_hidden_state
        last_hidden_state = outputs.last_hidden_state

        with tempfile.TemporaryDirectory() as tmpdirname:
            encoder = model.get_encoder()
            encoder.save_pretrained(tmpdirname)
            encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device)

        encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[
            0
        ]

        self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3)

        with tempfile.TemporaryDirectory() as tmpdirname:
            decoder = model.get_decoder()
            decoder.save_pretrained(tmpdirname)
            decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device)

        last_hidden_state_2 = decoder(
            input_ids=inputs_dict["decoder_input_ids"],
            attention_mask=inputs_dict["decoder_attention_mask"],
            encoder_hidden_states=encoder_last_hidden_state,
            encoder_attention_mask=inputs_dict["attention_mask"],
        )[0]

        self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3)
Sam Shleifer's avatar
Sam Shleifer committed
201
202
203


@require_torch
204
205
206
class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
    all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else ()
    all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else ()
Sam Shleifer's avatar
Sam Shleifer committed
207
208
209
210
211
212
213
214
    is_encoder_decoder = True
    test_pruning = False
    test_missing_keys = False

    def setUp(self):
        self.model_tester = BlenderbotModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

215
216
217
218
219
220
221
222
223
224
225
226
    def test_config(self):
        self.config_tester.run_common_tests()

    def test_save_load_strict(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs()
        for model_class in self.all_model_classes:
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True)
            self.assertEqual(info["missing_keys"], [])
Sam Shleifer's avatar
Sam Shleifer committed
227

228
229
230
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
Sam Shleifer's avatar
Sam Shleifer committed
231

232
233
234
    def test_encoder_decoder_model_standalone(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs)
Sam Shleifer's avatar
Sam Shleifer committed
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    def test_generate_fp16(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs()
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        model = BlenderbotForConditionalGeneration(config).eval().to(torch_device)
        if torch_device == "cuda":
            model.half()
        model.generate(input_ids, attention_mask=attention_mask)
        model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3)


def assert_tensors_close(a, b, atol=1e-12, prefix=""):
    """If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if torch.allclose(a, b, atol=atol):
            return True
        raise
    except Exception:
        pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item()
        if a.numel() > 100:
            msg = f"tensor values are {pct_different:.1%} percent different."
        else:
            msg = f"{a} != {b}"
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)
264

Sam Shleifer's avatar
Sam Shleifer committed
265
266
267

@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.")
@require_torch
268
269
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
270
271
272
273
274
275
276
277
278
class Blenderbot3BIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-3B"

    @cached_property
    def tokenizer(self):
        return BlenderbotTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_generation_from_short_input_same_as_parlai_3B(self):
279
280
281
        FASTER_GEN_KWARGS = dict(num_beams=1, early_stopping=True, min_length=15, max_length=25)
        TOK_DECODE_KW = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True)

282
283
        torch.cuda.empty_cache()
        model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
284
285
286

        src_text = ["Sam"]
        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
287

288
        generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
Sam Shleifer's avatar
Sam Shleifer committed
289
290
291
292
293
294
295
296
        tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'

        generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
        assert generated_txt[0].strip() == tgt_text

        src_text = "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like i'm going to throw up.\nand why is that?"

        model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device)
297

298
        generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0]
Sam Shleifer's avatar
Sam Shleifer committed
299
300
301
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert "I think it's because we are so worried about what people think of us." == reply.strip()
302
        del model