test_modeling_blenderbot.py 8.05 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the;
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# LICENSE file in the root directory of this source tree.
"""Tests for BlenderBot"""
import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch, slow, torch_device

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

    from transformers import (
        AutoModelForSeq2SeqLM,
        AutoTokenizer,
        BlenderbotConfig,
        BlenderbotForConditionalGeneration,
        BlenderbotSmallTokenizer,
        BlenderbotTokenizer,
    )

TOK_DECODE_KW = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True)
FASTER_GEN_KWARGS = dict(num_beams=1, early_stopping=True, min_length=15, max_length=25)


@require_torch
class BlenderbotModelTester:
    # Required attributes
    vocab_size = 99
    batch_size = 13
    seq_length = 7
    num_hidden_layers = 2
    hidden_size = 16
    num_attention_heads = 4
    is_training = True

    def __init__(self, parent):
        torch.manual_seed(0)
        self.parent = parent
        self.config = BlenderbotConfig(
            d_model=self.hidden_size,
            dropout=0.0,
            activation_function="gelu",
            vocab_size=self.vocab_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            attention_dropout=0.0,
            encoder_ffn_dim=4,
            decoder_ffn_dim=4,
            do_blenderbot_90_layernorm=False,
            normalize_before=True,
            max_position_embeddings=50,
            static_position_embeddings=False,
            scale_embedding=True,
            bos_token_id=0,
            eos_token_id=2,
            pad_token_id=1,
            num_beams=1,
            min_length=3,
            max_length=10,
        )

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
        return self.config, inputs_dict


@require_torch
class BlenderbotTesterMixin(ModelTesterMixin, unittest.TestCase):
    if is_torch_available():
        all_generative_model_classes = (BlenderbotForConditionalGeneration,)
        all_model_classes = (BlenderbotForConditionalGeneration,)
    else:
        all_generative_model_classes = ()
        all_model_classes = ()
    is_encoder_decoder = True
    test_head_masking = False
    test_pruning = False
    test_missing_keys = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = BlenderbotModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

    def test_inputs_embeds(self):
        pass

    def test_initialization_module(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = BlenderbotForConditionalGeneration(config).model
        model.to(torch_device)
        model.eval()
        enc_embeds = model.encoder.embed_tokens.weight
        assert (enc_embeds == model.shared.weight).all().item()
        self.assertAlmostEqual(torch.std(enc_embeds).item(), config.init_std, 2)

    def test_embed_pos_shape(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = BlenderbotForConditionalGeneration(config)
        expected_shape = (config.max_position_embeddings + config.extra_pos_embeddings, config.d_model)
        assert model.model.encoder.embed_positions.weight.shape == expected_shape
        model.model.decoder.embed_positions.weight.shape == expected_shape

    @unittest.skip("This test is flaky")
    def test_feed_forward_chunking(self):
        pass


@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.")
@require_torch
class Blenderbot3BIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-3B"

    @cached_property
    def model(self):
        model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).to(torch_device)
        if torch_device == "cuda":
            model = model.half()
        return model

    @cached_property
    def tokenizer(self):
        return BlenderbotTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_generation_from_short_input_same_as_parlai_3B(self):

        src_text = ["Sam"]
        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
        generated_utterances = self.model.generate(**model_inputs, **FASTER_GEN_KWARGS)
        tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'

        generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
        assert generated_txt[0].strip() == tgt_text

    @slow
    def test_generation_from_long_input_same_as_parlai_3B(self):

        src_text = "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like i'm going to throw up.\nand why is that?"

        model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device)
        generated_ids = self.model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0]
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert "I think it's because we are so worried about what people think of us." == reply.strip()


@require_torch
class Blenderbot90MIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-90M"

    @cached_property
    def model(self):
        model = AutoModelForSeq2SeqLM.from_pretrained(self.ckpt).to(torch_device)
        if torch_device == "cuda":
            model = model.half()
        return model

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_90_generation_from_long_input(self):

        src_text = [
            "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like\
       i'm going to throw up.\nand why is that?"
        ]

        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
        assert isinstance(self.tokenizer, BlenderbotSmallTokenizer)
        assert self.model.config.do
        generated_ids = self.model.generate(**model_inputs)[0]
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert reply in (
            "i don't know. i just feel like i'm going to throw up. it's not fun.",
            "i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
        )

    def test_90_generation_from_short_input(self):
        model_inputs = self.tokenizer(["sam"], return_tensors="pt").to(torch_device)
        generated_utterances = self.model.generate(**model_inputs)
        # generated_txt = self.tokenizer.decode(generated_utterances[0])

        # assert generated_txt == "__start__ have you ever heard of sam harris? he's an american singer, songwriter, and actor. __end__"
        clean_txt = self.tokenizer.decode(generated_utterances[0], **TOK_DECODE_KW)
        assert clean_txt in (
            "have you ever been to a sam club? it's a great club in the south.",
            "have you ever heard of sam harris? he's an american singer, songwriter, and actor.",
        )