test_modeling_blenderbot.py 7.91 KB
Newer Older
Sam Shleifer's avatar
Sam Shleifer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python3
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the;
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# LICENSE file in the root directory of this source tree.
"""Tests for BlenderBot"""
import unittest

from transformers import is_torch_available
from transformers.file_utils import cached_property
22
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
Sam Shleifer's avatar
Sam Shleifer committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, ids_tensor


if is_torch_available():
    import torch

    from transformers import (
        AutoModelForSeq2SeqLM,
        AutoTokenizer,
        BlenderbotConfig,
        BlenderbotForConditionalGeneration,
        BlenderbotSmallTokenizer,
        BlenderbotTokenizer,
    )

TOK_DECODE_KW = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True)
FASTER_GEN_KWARGS = dict(num_beams=1, early_stopping=True, min_length=15, max_length=25)


@require_torch
class BlenderbotModelTester:
    # Required attributes
    vocab_size = 99
    batch_size = 13
    seq_length = 7
    num_hidden_layers = 2
    hidden_size = 16
    num_attention_heads = 4
    is_training = True

    def __init__(self, parent):
        torch.manual_seed(0)
        self.parent = parent
        self.config = BlenderbotConfig(
            d_model=self.hidden_size,
            dropout=0.0,
            activation_function="gelu",
            vocab_size=self.vocab_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            attention_dropout=0.0,
            encoder_ffn_dim=4,
            decoder_ffn_dim=4,
            do_blenderbot_90_layernorm=False,
            normalize_before=True,
            max_position_embeddings=50,
            static_position_embeddings=False,
            scale_embedding=True,
            bos_token_id=0,
            eos_token_id=2,
            pad_token_id=1,
            num_beams=1,
            min_length=3,
            max_length=10,
        )

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
        inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
        return self.config, inputs_dict


@require_torch
class BlenderbotTesterMixin(ModelTesterMixin, unittest.TestCase):
    if is_torch_available():
        all_generative_model_classes = (BlenderbotForConditionalGeneration,)
        all_model_classes = (BlenderbotForConditionalGeneration,)
    else:
        all_generative_model_classes = ()
        all_model_classes = ()
    is_encoder_decoder = True
    test_head_masking = False
    test_pruning = False
    test_missing_keys = False
    test_torchscript = False

    def setUp(self):
        self.model_tester = BlenderbotModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BlenderbotConfig)

    def test_inputs_embeds(self):
        pass

    def test_initialization_module(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = BlenderbotForConditionalGeneration(config).model
        model.to(torch_device)
        model.eval()
        enc_embeds = model.encoder.embed_tokens.weight
        assert (enc_embeds == model.shared.weight).all().item()
        self.assertAlmostEqual(torch.std(enc_embeds).item(), config.init_std, 2)

    def test_embed_pos_shape(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = BlenderbotForConditionalGeneration(config)
        expected_shape = (config.max_position_embeddings + config.extra_pos_embeddings, config.d_model)
        assert model.model.encoder.embed_positions.weight.shape == expected_shape
        model.model.decoder.embed_positions.weight.shape == expected_shape

    @unittest.skip("This test is flaky")
    def test_feed_forward_chunking(self):
        pass


@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.")
@require_torch
134
135
@require_sentencepiece
@require_tokenizers
Sam Shleifer's avatar
Sam Shleifer committed
136
137
138
139
140
141
142
143
144
class Blenderbot3BIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-3B"

    @cached_property
    def tokenizer(self):
        return BlenderbotTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_generation_from_short_input_same_as_parlai_3B(self):
145
146
        torch.cuda.empty_cache()
        model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device)
Sam Shleifer's avatar
Sam Shleifer committed
147
148
149

        src_text = ["Sam"]
        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
150

151
        generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
Sam Shleifer's avatar
Sam Shleifer committed
152
153
154
155
156
157
158
159
        tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'

        generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
        assert generated_txt[0].strip() == tgt_text

        src_text = "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like i'm going to throw up.\nand why is that?"

        model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device)
160

161
        generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0]
Sam Shleifer's avatar
Sam Shleifer committed
162
163
164
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert "I think it's because we are so worried about what people think of us." == reply.strip()
165
        del model
Sam Shleifer's avatar
Sam Shleifer committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191


@require_torch
class Blenderbot90MIntegrationTests(unittest.TestCase):
    ckpt = "facebook/blenderbot-90M"

    @cached_property
    def model(self):
        model = AutoModelForSeq2SeqLM.from_pretrained(self.ckpt).to(torch_device)
        if torch_device == "cuda":
            model = model.half()
        return model

    @cached_property
    def tokenizer(self):
        return AutoTokenizer.from_pretrained(self.ckpt)

    @slow
    def test_90_generation_from_long_input(self):

        src_text = [
            "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like\
       i'm going to throw up.\nand why is that?"
        ]

        model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device)
192
193
194

        # model does not have "token_type_ids"
        model_inputs.pop("token_type_ids")
Sam Shleifer's avatar
Sam Shleifer committed
195
196
197
198
199
200
201
202
203
204
205
        assert isinstance(self.tokenizer, BlenderbotSmallTokenizer)
        generated_ids = self.model.generate(**model_inputs)[0]
        reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW)

        assert reply in (
            "i don't know. i just feel like i'm going to throw up. it's not fun.",
            "i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
        )

    def test_90_generation_from_short_input(self):
        model_inputs = self.tokenizer(["sam"], return_tensors="pt").to(torch_device)
206
207
208

        # model does not have "token_type_ids"
        model_inputs.pop("token_type_ids")
Sam Shleifer's avatar
Sam Shleifer committed
209
210
211
212
213
214
215
        generated_utterances = self.model.generate(**model_inputs)

        clean_txt = self.tokenizer.decode(generated_utterances[0], **TOK_DECODE_KW)
        assert clean_txt in (
            "have you ever been to a sam club? it's a great club in the south.",
            "have you ever heard of sam harris? he's an american singer, songwriter, and actor.",
        )