test_tokenization_whisper.py 26.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
import numpy as np

19
from transformers.models.whisper import WhisperTokenizer, WhisperTokenizerFast
20
from transformers.models.whisper.tokenization_whisper import _combine_tokens_into_words, _find_longest_common_sequence
21
from transformers.testing_utils import slow
22
23
24
25

from ...test_tokenization_common import TokenizerTesterMixin


26
27
28
29
30
31
32
ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363
33
34
35


class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
36
    from_pretrained_id = "openai/whisper-tiny"
37
    tokenizer_class = WhisperTokenizer
38
39
    rust_tokenizer_class = WhisperTokenizerFast
    test_rust_tokenizer = True
40
    test_sentencepiece = False
41
    test_seq2seq = False
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

    def setUp(self):
        super().setUp()
        tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        tokenizer.pad_token_id = 50256
        tokenizer.pad_token = "<|endoftext|>"
        tokenizer.save_pretrained(self.tmpdirname)

    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "Where"
        token_id = 14436

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "!")
        self.assertEqual(vocab_keys[1], '"')
63
64
        self.assertEqual(vocab_keys[-1], "<|30.00|>")
        self.assertEqual(len(vocab_keys), 51865)
65
66

    def test_vocab_size(self):
Arthur's avatar
Arthur committed
67
        self.assertEqual(self.get_tokenizer().vocab_size, 50258)
68
69
70
71
72

    def test_full_tokenizer(self):
        tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)

        tokens = tokenizer.tokenize("This is a test")
73
        self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġtest"])
74
75
76

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
77
            [5723, 307, 257, 1500],
78
79
80
81
82
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
83
84
            ["I", "Ġwas", "Ġborn", "Ġin", "Ġ9", "2000", ",", "Ġand", "Ġthis", "Ġis", "Ġfals", "é", "."],  # fmt: skip
        )
85
        ids = tokenizer.convert_tokens_to_ids(tokens)
86
        self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 341, 307, 16720, 526, 13])
87
88
89
90

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
91
92
            ["I", "Ġwas", "Ġborn", "Ġin", "Ġ9", "2000", ",", "Ġand", "Ġthis", "Ġis", "Ġfals", "é", "."],  # fmt: skip
        )
93

amyeroberts's avatar
amyeroberts committed
94
    @unittest.skip
95
96
97
    def test_tokenizer_slow_store_full_signature(self):
        pass

amyeroberts's avatar
amyeroberts committed
98
    @unittest.skip
99
100
101
    def test_tokenizer_fast_store_full_signature(self):
        pass

amyeroberts's avatar
amyeroberts committed
102
    @unittest.skip
103
104
105
106
107
108
109
110
    def test_special_tokens_initialization(self):
        # Whisper relies on specific additional special tokens, so we skip this
        # general test. In particular, this test loads fast tokenizer from slow
        # tokenizer, and the conversion uses prefix_tokens, where we reference
        # additional special tokens by specific indices, hence overriding the
        # list with less tokens leads to out of index error
        pass

111
112
    @slow
    def test_tokenizer_integration(self):
113
        expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}  # fmt: skip
114
115
116
117
118

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
        )

119
120
121
122
123
124
125
126
127
128
129
130
    def test_output_offsets(self):
        tokenizer = self.get_tokenizer()
        previous_sequence = [51492, 406, 3163, 1953, 466, 13, 51612, 51612]
        self.assertEqual(
            tokenizer.decode(previous_sequence, output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
131
        next_sequences_1 = [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]  # fmt: skip
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        self.assertEqual(
            tokenizer.decode(next_sequences_1, output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )

    def test_find_longest_common_subsequence(self):
        previous_sequence = [1, 2, 3]
        next_sequence = [2, 3, 4, 5]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # Now previous is larger than next.
        # We merge what we can and remove the extra right side of the left sequence
        previous_sequence = [1, 2, 3, 4, 5, 6, 7]
        next_sequence = [2, 3, 4, 5]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # Nothing in common
        previous_sequence = [1, 2, 3]
        next_sequence = [4, 5, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6])

        # Some errors in the overlap.
        # We take from previous on the left, from the next on the right of the overlap
        previous_sequence = [1, 2, 3, 4, 99]
        next_sequence = [2, 98, 4, 5, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6])

        # We take from previous on the left, from the next on the right of the overlap
        previous_sequence = [1, 2, 99, 4, 5]
        next_sequence = [2, 3, 4, 98, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 99, 4, 98, 6])

        # This works on 3 sequences
        seq1 = [1, 2, 3]
        seq2 = [2, 3, 4]
        seq3 = [3, 4, 5]
        merge = _find_longest_common_sequence([seq1, seq2, seq3])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # This works on 3 sequences with errors
        seq1 = [1, 2, 3, 98, 5]
        seq2 = [2, 99, 4, 5, 6, 7]
        seq3 = [4, 97, 6, 7, 8]
        merge = _find_longest_common_sequence([seq1, seq2, seq3])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6, 7, 8])

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def test_skip_special_tokens_skips_prompt_ids(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()
        # fmt: off
        encoded_input = [
            50361, 2221, 13, 2326, 388, 391, 50258, 50259, 50359,
            50363, 1282, 264, 2674, 9156, 295, 1523, 11, 2221, 13,
            2326, 388, 391, 13657, 365, 2681, 21296, 17711, 13, 50257,
        ]
        # fmt: on
        expected_with_special_tokens = "<|startofprev|> Mr. Quilter<|startoftranscript|><|en|><|transcribe|><|notimestamps|> On the general principles of art, Mr. Quilter writes with equal lucidity.<|endoftext|>"
        expected_without_special_tokens = " On the general principles of art, Mr. Quilter writes with equal lucidity."
        self.assertEqual(tokenizer.decode(encoded_input, skip_special_tokens=False), expected_with_special_tokens)
        self.assertEqual(tokenizer.decode(encoded_input, skip_special_tokens=True), expected_without_special_tokens)
        self.assertEqual(rust_tokenizer.decode(encoded_input, skip_special_tokens=False), expected_with_special_tokens)
        self.assertEqual(
            rust_tokenizer.decode(encoded_input, skip_special_tokens=True), expected_without_special_tokens
        )

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_skip_special_tokens_with_timestamps(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        # fmt: off
        encoded_input = [
            50258, 50363, 50364, 634, 575, 12525, 22618, 1968, 6144,
            35617, 20084, 1756, 311, 589, 307, 534, 10281, 934,
            439, 293, 50676, 50676, 393, 4411, 294, 309, 457,
            707, 295, 33301, 286, 392, 6628, 13, 50836, 50257,
        ]
        # fmt: on

        expected_with_special_tokens = "<|startoftranscript|><|notimestamps|><|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all and<|6.24|><|6.24|> can discover in it but little of rocky Ithaca.<|9.44|><|endoftext|>"
        expected_without_special_tokens = "<|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all and<|6.24|><|6.24|> can discover in it but little of rocky Ithaca.<|9.44|>"
        self.assertEqual(
            tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=False),
            expected_with_special_tokens,
        )
        self.assertEqual(
            tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=True),
            expected_without_special_tokens,
        )
        self.assertEqual(
            rust_tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=False),
            expected_with_special_tokens,
        )
        self.assertEqual(
            rust_tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=True),
            expected_without_special_tokens,
        )

246
247
248
249
250
251
252
253
254
255
    def test_fast_tokenizer_get_prompt_ids(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        prompt = "This is test prompt text."
        tokenizer_prompt_ids = tokenizer.get_prompt_ids(prompt)
        fast_tokenizer_prompt_ids = rust_tokenizer.get_prompt_ids(prompt)

        self.assertListEqual(tokenizer_prompt_ids.tolist(), fast_tokenizer_prompt_ids.tolist())

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_tokenizer_decode_prompt(self):
        prompt_text = "What does the fox say?"
        input_text = "Hatee hatee hatee ho"

        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        # encode prompt and input text using tokenizer
        prompt_ids = tokenizer.get_prompt_ids(prompt_text, return_tensors="np")
        input_ids = tokenizer(input_text, return_tensors="np").input_ids[0]
        input_ids = np.hstack([prompt_ids, input_ids])

        # encode using fast tokenizer
        rust_prompt_ids = rust_tokenizer.get_prompt_ids(prompt_text, return_tensors="np")
        rust_input_ids = rust_tokenizer(input_text, return_tensors="np").input_ids[0]
        rust_input_ids = np.hstack([rust_prompt_ids, rust_input_ids])

        # check with prompt in output
        pred_text = tokenizer.decode(input_ids, skip_special_tokens=False)
        rust_pred_text = rust_tokenizer.decode(rust_input_ids, skip_special_tokens=False)

        # check correctness for both tokenizers
        expected_text = f"<|startofprev|> {prompt_text}<|startoftranscript|><|notimestamps|>{input_text}<|endoftext|>"
        self.assertEqual(pred_text.strip(), expected_text)
        self.assertEqual(rust_pred_text.strip(), expected_text)

        # check stripping prompt from output
        pred_text = tokenizer.decode(input_ids, skip_special_tokens=True)
        rust_pred_text = tokenizer.decode(input_ids, skip_special_tokens=True)

        self.assertEqual(pred_text.strip(), input_text)
        self.assertEqual(rust_pred_text.strip(), input_text)

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    def test_combine_tokens_into_words(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        # 'whatever "whatever" said someone, clever!?'
        encoded_input = [1363, 7969, 503, 1363, 7969, 1, 848, 1580, 11, 13494, 7323]
        expected_words = ["whatever", ' "whatever"', " said", " someone,", " clever!?"]
        expected_tokens = [[1363, 7969], [503, 1363, 7969, 1], [848], [1580, 11], [13494, 7323]]
        expected_indices = [[0, 1], [2, 3, 4, 5], [6], [7, 8], [9, 10]]
        output = _combine_tokens_into_words(tokenizer, encoded_input)
        self.assertEqual(expected_words, output[0])
        self.assertEqual(expected_tokens, output[1])
        self.assertEqual(expected_indices, output[2])
        output_rust = _combine_tokens_into_words(rust_tokenizer, encoded_input)
        self.assertEqual(expected_words, output_rust[0])
        self.assertEqual(expected_tokens, output_rust[1])
        self.assertEqual(expected_indices, output_rust[2])

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    def test_basic_normalizer(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        input_str = "Hola güey!"
        expected_output_normalize = "hola güey "
        expected_output_diacritics = "hola guey "

        # tokenizer tests
        encoded_input = tokenizer(input_str).input_ids
        decoded_output = tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=False)
        self.assertEqual(decoded_output, input_str)

        decoded_output_normalize = tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=True)
        self.assertEqual(decoded_output_normalize, expected_output_normalize)

        decoded_output_diacritics = tokenizer.decode(
            encoded_input, skip_special_tokens=True, basic_normalize=True, remove_diacritics=True
        )
        self.assertEqual(decoded_output_diacritics, expected_output_diacritics)

        # fast tokenizer tests
        encoded_input = rust_tokenizer(input_str).input_ids
        decoded_output = rust_tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=False)
        self.assertEqual(decoded_output, input_str)

        decoded_output_normalize = rust_tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=True)
        self.assertEqual(decoded_output_normalize, expected_output_normalize)

        decoded_output_diacritics = rust_tokenizer.decode(
            encoded_input, skip_special_tokens=True, basic_normalize=True, remove_diacritics=True
        )
        self.assertEqual(decoded_output_diacritics, expected_output_diacritics)

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    def test_decode_asr_with_word_level_timestamps(self):
        # fmt: off
        model_outputs = [
            {
                'stride': [10, 0, 5],
                'tokens': np.array([[ 50257, 50362, 3363, 11, 345, 460, 0, 2329, 466, 340, 0, 50256 ]]),
                'token_timestamps': np.array([[ 0, 0, 5.18, 5.56, 5.56, 5.84, 6.36, 7.12, 7.54, 7.82, 8.16, 9.48 ]])
            },
            {
                'stride': [10, 5, 0],
                'tokens': np.array([[ 50257, 50362, 2329, 466, 340, 0, 3363, 345, 460, 0, 2329, 466, 340, 50256 ]]),
                'token_timestamps': np.array([[ 0, 0, 0, 2.44, 4.3, 5.04, 5.06, 5.56, 5.8, 6.32, 7.12, 7.56, 7.8, 8.72 ]])
            }
        ]
        # fmt: on

        tokenizer = WhisperTokenizer.from_pretrained("onnx-community/whisper-tiny.en_timestamped")
        result = tokenizer._decode_asr(
            model_outputs, return_timestamps="word", return_language=False, time_precision=0.02
        )

        EXPECTED_OUTPUT = (
            " Yes, you can! Just do it",
            {
                "chunks": [
                    {"text": " Yes,", "timestamp": (5.18, 5.56)},
                    {"text": " you", "timestamp": (5.56, 5.84)},
                    {"text": " can!", "timestamp": (5.84, 7.12)},
                    {"text": " Just", "timestamp": (7.12, 7.56)},
                    {"text": " do", "timestamp": (7.56, 7.8)},
                    {"text": " it", "timestamp": (7.8, 8.72)},
                ]
            },
        )
        self.assertEqual(result, EXPECTED_OUTPUT)

377
378
379
380
381
382
383
384
385
386
387

class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
    checkpoint_name = "openai/whisper-small.en"

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
        return cls

    def test_tokenizer_equivalence(self):
        text = "다람쥐 헌 쳇바퀴에 타고파"
388
389
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
        monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
390

391
392
        monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
        multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)
393

394
        assert monolingual_tokenizer.decode(monolingual_tokens) == text
395
        assert multilingual_tokenizer.decode(multilingual_tokens) == text
396
        assert len(monolingual_tokens) > len(multilingual_tokens)
397
398
399
400
401
402
403
404
405
406
407
408
409
410

        # fmt: off
        EXPECTED_ENG = [
            46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
            245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
            112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
            254, 169, 234, 234
        ]
        EXPECTED_MULTI = [
            9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
            169, 222, 19086, 19840, 1313, 17974
        ]
        # fmt: on

411
        self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
412
413
414
        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

    def test_tokenizer_special(self):
415
416
417
418
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="english", task="transcribe"
        )
        text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
419
420
421
422

        multilingual_tokens = multilingual_tokenizer.encode(text)

        # fmt: off
423
        # format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
424
        EXPECTED_MULTI = [
425
426
427
            START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
            2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
            115, 15567, 871, 44393, END_OF_TRANSCRIPT
428
        ]
429
430
431
432
        EXPECTED_SPECIAL_TEXT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
            "J'ai l'impression que 郷さん est prêt<|endoftext|>"
        )
433
434
435
436
        # fmt: on

        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

437
438
        special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
        self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)
439
440

        transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
441
        self.assertEqual(transcript, text)
442
443
444
445

    def test_vocab_size(self):
        self.assertEqual(self.tokenizer.vocab_size, 50257)

446
    # Copied from tests.models.speech_to_text.test_tokenization_speech_to_text.SpeechToTextTokenizerMultilinguialTest.test_tokenizer_decode_ignores_language_codes
447
448
449
450
451
452
453
454
455
    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
        generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_spanish)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_batch_encoding(self):
456
457
458
459
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )
        batch = ["El gato ", "El gato se sentó"]
460
461
462
463
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
464
465
466
467
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
             2279, 812, END_OF_TRANSCRIPT]
468
469
470
471
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

    def test_set_prefix_tokens(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )

        # change the language prefix token from Spanish to English
        multilingual_tokenizer.set_prefix_tokens(language="english")

        batch = ["the cat", "the cat sat"]
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             3227, END_OF_TRANSCRIPT]
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)

    def test_batch_encoding_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
        batch = ["hola güey", "que onda"]
        batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
        transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
        self.assertListEqual(batch, transcription)
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

    def test_offset_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        # fmt: off
        INPUT_TOKENS = [
            50258, 50259, 50359, 50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724, 50724, 366,
            382, 4048, 382, 257, 361, 18459, 13065, 13, 2221, 13,
            7145, 74, 325, 38756, 311, 29822, 7563, 412, 472, 709,
            294, 264, 51122, 51122, 912, 636, 300, 2221, 13, 2741,
            5767, 1143, 281, 7319, 702, 7798, 13, 400, 2221, 13,
            2619, 4004, 811, 2709, 702, 51449, 51449, 50257
        ]
        # fmt: on
        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]

        self.assertEqual(
            output,
            [
                {
                    "text": (
                        " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles"
                    ),
                    "timestamp": (0.0, 7.2),
                },
                {
                    "text": (
                        " are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the"
                    ),
                    "timestamp": (7.2, 15.16),
                },
                {
                    "text": " same way that Mr. Carker used to flash his teeth. And Mr. John Colier gives his",
                    "timestamp": (15.16, 21.7),
                },
            ],
        )
Arthur's avatar
Arthur committed
539
540
541
542
543
544
545
546
547
        # test `decode_with_offsets`
        output = multilingual_tokenizer.decode(INPUT_TOKENS, decode_with_timestamps=True)
        self.assertEqual(
            output,
            "<|startoftranscript|><|en|><|transcribe|><|0.00|> Lennils, pictures are a sort of upguards and atom"
            " paintings, and Mason's exquisite idles<|7.20|><|7.20|> are as national as a jingo poem. Mr. Birkut"
            " Foster's landscapes smile at one much in the<|15.16|><|15.16|> same way that Mr. Carker used to flash"
            " his teeth. And Mr. John Colier gives his<|21.70|><|21.70|><|endoftext|>",
        )
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        # test a single sequence with timestamps
        # fmt: off
        INPUT_TOKENS = [
            50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(
            output[0],
            {
                "text": " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles",
                "timestamp": (0.0, 7.2),
            },
        )

        # test a sequence without a single timestamps
        # fmt: off
        INPUT_TOKENS = [
            441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(output, [])