test_tokenization_whisper.py 24.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
from transformers.models.whisper import WhisperTokenizer, WhisperTokenizerFast
18
from transformers.models.whisper.tokenization_whisper import _combine_tokens_into_words, _find_longest_common_sequence
19
from transformers.testing_utils import require_jinja, slow
20
21
22
23

from ...test_tokenization_common import TokenizerTesterMixin


24
25
26
27
28
29
30
ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363
31
32
33
34


class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = WhisperTokenizer
35
36
    rust_tokenizer_class = WhisperTokenizerFast
    test_rust_tokenizer = True
37
    test_sentencepiece = False
38
    test_seq2seq = False
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

    def setUp(self):
        super().setUp()
        tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        tokenizer.pad_token_id = 50256
        tokenizer.pad_token = "<|endoftext|>"
        tokenizer.save_pretrained(self.tmpdirname)

    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "Where"
        token_id = 14436

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "!")
        self.assertEqual(vocab_keys[1], '"')
60
61
        self.assertEqual(vocab_keys[-1], "<|30.00|>")
        self.assertEqual(len(vocab_keys), 51865)
62
63

    def test_vocab_size(self):
Arthur's avatar
Arthur committed
64
        self.assertEqual(self.get_tokenizer().vocab_size, 50258)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    def test_full_tokenizer(self):
        tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [5723, 307, 257, 220, 31636],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
80
81
            ["I", "Ġwas", "Ġborn", "Ġin", "Ġ9", "2000", ",", "Ġand", "Ġ", "this", "Ġis", "Ġfals", "é", "."],  # fmt: skip
        )  # fmt: skip
82
83
84
85
86
87
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
88
89
            ["I", "Ġwas", "Ġborn", "Ġin", "Ġ9", "2000", ",", "Ġand", "Ġ", "this", "Ġis", "Ġfals", "é", "."],  # fmt: skip
        )  # fmt: skip
90
91
92
93

    def test_tokenizer_slow_store_full_signature(self):
        pass

94
95
96
97
98
99
100
101
102
103
104
    def test_tokenizer_fast_store_full_signature(self):
        pass

    def test_special_tokens_initialization(self):
        # Whisper relies on specific additional special tokens, so we skip this
        # general test. In particular, this test loads fast tokenizer from slow
        # tokenizer, and the conversion uses prefix_tokens, where we reference
        # additional special tokens by specific indices, hence overriding the
        # list with less tokens leads to out of index error
        pass

105
106
    @slow
    def test_tokenizer_integration(self):
107
        expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}  # fmt: skip
108
109
110
111
112

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
        )

113
114
115
116
117
118
119
120
121
122
123
124
    def test_output_offsets(self):
        tokenizer = self.get_tokenizer()
        previous_sequence = [51492, 406, 3163, 1953, 466, 13, 51612, 51612]
        self.assertEqual(
            tokenizer.decode(previous_sequence, output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
125
        next_sequences_1 = [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]  # fmt: skip
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        self.assertEqual(
            tokenizer.decode(next_sequences_1, output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )

    def test_find_longest_common_subsequence(self):
        previous_sequence = [1, 2, 3]
        next_sequence = [2, 3, 4, 5]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # Now previous is larger than next.
        # We merge what we can and remove the extra right side of the left sequence
        previous_sequence = [1, 2, 3, 4, 5, 6, 7]
        next_sequence = [2, 3, 4, 5]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # Nothing in common
        previous_sequence = [1, 2, 3]
        next_sequence = [4, 5, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6])

        # Some errors in the overlap.
        # We take from previous on the left, from the next on the right of the overlap
        previous_sequence = [1, 2, 3, 4, 99]
        next_sequence = [2, 98, 4, 5, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6])

        # We take from previous on the left, from the next on the right of the overlap
        previous_sequence = [1, 2, 99, 4, 5]
        next_sequence = [2, 3, 4, 98, 6]
        merge = _find_longest_common_sequence([previous_sequence, next_sequence])
        self.assertEqual(merge, [1, 2, 99, 4, 98, 6])

        # This works on 3 sequences
        seq1 = [1, 2, 3]
        seq2 = [2, 3, 4]
        seq3 = [3, 4, 5]
        merge = _find_longest_common_sequence([seq1, seq2, seq3])
        self.assertEqual(merge, [1, 2, 3, 4, 5])

        # This works on 3 sequences with errors
        seq1 = [1, 2, 3, 98, 5]
        seq2 = [2, 99, 4, 5, 6, 7]
        seq3 = [4, 97, 6, 7, 8]
        merge = _find_longest_common_sequence([seq1, seq2, seq3])
        self.assertEqual(merge, [1, 2, 3, 4, 5, 6, 7, 8])

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_skip_special_tokens_skips_prompt_ids(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()
        # fmt: off
        encoded_input = [
            50361, 2221, 13, 2326, 388, 391, 50258, 50259, 50359,
            50363, 1282, 264, 2674, 9156, 295, 1523, 11, 2221, 13,
            2326, 388, 391, 13657, 365, 2681, 21296, 17711, 13, 50257,
        ]
        # fmt: on
        expected_with_special_tokens = "<|startofprev|> Mr. Quilter<|startoftranscript|><|en|><|transcribe|><|notimestamps|> On the general principles of art, Mr. Quilter writes with equal lucidity.<|endoftext|>"
        expected_without_special_tokens = " On the general principles of art, Mr. Quilter writes with equal lucidity."
        self.assertEqual(tokenizer.decode(encoded_input, skip_special_tokens=False), expected_with_special_tokens)
        self.assertEqual(tokenizer.decode(encoded_input, skip_special_tokens=True), expected_without_special_tokens)
        self.assertEqual(rust_tokenizer.decode(encoded_input, skip_special_tokens=False), expected_with_special_tokens)
        self.assertEqual(
            rust_tokenizer.decode(encoded_input, skip_special_tokens=True), expected_without_special_tokens
        )

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def test_skip_special_tokens_with_timestamps(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        # fmt: off
        encoded_input = [
            50258, 50363, 50364, 634, 575, 12525, 22618, 1968, 6144,
            35617, 20084, 1756, 311, 589, 307, 534, 10281, 934,
            439, 293, 50676, 50676, 393, 4411, 294, 309, 457,
            707, 295, 33301, 286, 392, 6628, 13, 50836, 50257,
        ]
        # fmt: on

        expected_with_special_tokens = "<|startoftranscript|><|notimestamps|><|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all and<|6.24|><|6.24|> can discover in it but little of rocky Ithaca.<|9.44|><|endoftext|>"
        expected_without_special_tokens = "<|0.00|> He has grave doubts whether Sir Frederick Layton's work is really Greek after all and<|6.24|><|6.24|> can discover in it but little of rocky Ithaca.<|9.44|>"
        self.assertEqual(
            tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=False),
            expected_with_special_tokens,
        )
        self.assertEqual(
            tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=True),
            expected_without_special_tokens,
        )
        self.assertEqual(
            rust_tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=False),
            expected_with_special_tokens,
        )
        self.assertEqual(
            rust_tokenizer.decode(encoded_input, decode_with_timestamps=True, skip_special_tokens=True),
            expected_without_special_tokens,
        )

240
241
242
243
244
245
246
247
248
249
    def test_fast_tokenizer_get_prompt_ids(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        prompt = "This is test prompt text."
        tokenizer_prompt_ids = tokenizer.get_prompt_ids(prompt)
        fast_tokenizer_prompt_ids = rust_tokenizer.get_prompt_ids(prompt)

        self.assertListEqual(tokenizer_prompt_ids.tolist(), fast_tokenizer_prompt_ids.tolist())

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    def test_combine_tokens_into_words(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        # 'whatever "whatever" said someone, clever!?'
        encoded_input = [1363, 7969, 503, 1363, 7969, 1, 848, 1580, 11, 13494, 7323]
        expected_words = ["whatever", ' "whatever"', " said", " someone,", " clever!?"]
        expected_tokens = [[1363, 7969], [503, 1363, 7969, 1], [848], [1580, 11], [13494, 7323]]
        expected_indices = [[0, 1], [2, 3, 4, 5], [6], [7, 8], [9, 10]]
        output = _combine_tokens_into_words(tokenizer, encoded_input)
        self.assertEqual(expected_words, output[0])
        self.assertEqual(expected_tokens, output[1])
        self.assertEqual(expected_indices, output[2])
        output_rust = _combine_tokens_into_words(rust_tokenizer, encoded_input)
        self.assertEqual(expected_words, output_rust[0])
        self.assertEqual(expected_tokens, output_rust[1])
        self.assertEqual(expected_indices, output_rust[2])

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    def test_basic_normalizer(self):
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        input_str = "Hola güey!"
        expected_output_normalize = "hola güey "
        expected_output_diacritics = "hola guey "

        # tokenizer tests
        encoded_input = tokenizer(input_str).input_ids
        decoded_output = tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=False)
        self.assertEqual(decoded_output, input_str)

        decoded_output_normalize = tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=True)
        self.assertEqual(decoded_output_normalize, expected_output_normalize)

        decoded_output_diacritics = tokenizer.decode(
            encoded_input, skip_special_tokens=True, basic_normalize=True, remove_diacritics=True
        )
        self.assertEqual(decoded_output_diacritics, expected_output_diacritics)

        # fast tokenizer tests
        encoded_input = rust_tokenizer(input_str).input_ids
        decoded_output = rust_tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=False)
        self.assertEqual(decoded_output, input_str)

        decoded_output_normalize = rust_tokenizer.decode(encoded_input, skip_special_tokens=True, basic_normalize=True)
        self.assertEqual(decoded_output_normalize, expected_output_normalize)

        decoded_output_diacritics = rust_tokenizer.decode(
            encoded_input, skip_special_tokens=True, basic_normalize=True, remove_diacritics=True
        )
        self.assertEqual(decoded_output_diacritics, expected_output_diacritics)

302
303
304
305
306
307
308
309
310
311
312

class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
    checkpoint_name = "openai/whisper-small.en"

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
        return cls

    def test_tokenizer_equivalence(self):
        text = "다람쥐 헌 쳇바퀴에 타고파"
313
314
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
        monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
315

316
317
        monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
        multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)
318

319
        assert monolingual_tokenizer.decode(monolingual_tokens) == text
320
        assert multilingual_tokenizer.decode(multilingual_tokens) == text
321
        assert len(monolingual_tokens) > len(multilingual_tokens)
322
323
324
325
326
327
328
329
330
331
332
333
334
335

        # fmt: off
        EXPECTED_ENG = [
            46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
            245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
            112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
            254, 169, 234, 234
        ]
        EXPECTED_MULTI = [
            9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
            169, 222, 19086, 19840, 1313, 17974
        ]
        # fmt: on

336
        self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
337
338
339
        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

    def test_tokenizer_special(self):
340
341
342
343
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="english", task="transcribe"
        )
        text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
344
345
346
347

        multilingual_tokens = multilingual_tokenizer.encode(text)

        # fmt: off
348
        # format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
349
        EXPECTED_MULTI = [
350
351
352
            START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
            2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
            115, 15567, 871, 44393, END_OF_TRANSCRIPT
353
        ]
354
355
356
357
        EXPECTED_SPECIAL_TEXT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
            "J'ai l'impression que 郷さん est prêt<|endoftext|>"
        )
358
359
360
361
        # fmt: on

        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

362
363
        special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
        self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)
364
365

        transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
366
        self.assertEqual(transcript, text)
367
368
369
370

    def test_vocab_size(self):
        self.assertEqual(self.tokenizer.vocab_size, 50257)

371
    # Copied from tests.models.speech_to_text.test_tokenization_speech_to_text.SpeechToTextTokenizerMultilinguialTest.test_tokenizer_decode_ignores_language_codes
372
373
374
375
376
377
378
379
380
    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
        generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_spanish)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_batch_encoding(self):
381
382
383
384
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )
        batch = ["El gato ", "El gato se sentó"]
385
386
387
388
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
389
390
391
392
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
             2279, 812, END_OF_TRANSCRIPT]
393
394
395
396
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

    def test_set_prefix_tokens(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )

        # change the language prefix token from Spanish to English
        multilingual_tokenizer.set_prefix_tokens(language="english")

        batch = ["the cat", "the cat sat"]
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             3227, END_OF_TRANSCRIPT]
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)

    def test_batch_encoding_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
        batch = ["hola güey", "que onda"]
        batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
        transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
        self.assertListEqual(batch, transcription)
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

    def test_offset_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        # fmt: off
        INPUT_TOKENS = [
            50258, 50259, 50359, 50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724, 50724, 366,
            382, 4048, 382, 257, 361, 18459, 13065, 13, 2221, 13,
            7145, 74, 325, 38756, 311, 29822, 7563, 412, 472, 709,
            294, 264, 51122, 51122, 912, 636, 300, 2221, 13, 2741,
            5767, 1143, 281, 7319, 702, 7798, 13, 400, 2221, 13,
            2619, 4004, 811, 2709, 702, 51449, 51449, 50257
        ]
        # fmt: on
        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]

        self.assertEqual(
            output,
            [
                {
                    "text": (
                        " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles"
                    ),
                    "timestamp": (0.0, 7.2),
                },
                {
                    "text": (
                        " are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the"
                    ),
                    "timestamp": (7.2, 15.16),
                },
                {
                    "text": " same way that Mr. Carker used to flash his teeth. And Mr. John Colier gives his",
                    "timestamp": (15.16, 21.7),
                },
            ],
        )
Arthur's avatar
Arthur committed
464
465
466
467
468
469
470
471
472
        # test `decode_with_offsets`
        output = multilingual_tokenizer.decode(INPUT_TOKENS, decode_with_timestamps=True)
        self.assertEqual(
            output,
            "<|startoftranscript|><|en|><|transcribe|><|0.00|> Lennils, pictures are a sort of upguards and atom"
            " paintings, and Mason's exquisite idles<|7.20|><|7.20|> are as national as a jingo poem. Mr. Birkut"
            " Foster's landscapes smile at one much in the<|15.16|><|15.16|> same way that Mr. Carker used to flash"
            " his teeth. And Mr. John Colier gives his<|21.70|><|21.70|><|endoftext|>",
        )
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        # test a single sequence with timestamps
        # fmt: off
        INPUT_TOKENS = [
            50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(
            output[0],
            {
                "text": " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles",
                "timestamp": (0.0, 7.2),
            },
        )

        # test a sequence without a single timestamps
        # fmt: off
        INPUT_TOKENS = [
            441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(output, [])
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

    @require_jinja
    def test_tokenization_for_chat(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        # This is in English, but it's just here to make sure the chat control tokens are being added properly
        test_chats = [
            [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}],
            [
                {"role": "system", "content": "You are a helpful chatbot."},
                {"role": "user", "content": "Hello!"},
                {"role": "assistant", "content": "Nice to meet you."},
            ],
            [{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}],
        ]
        tokenized_chats = [multilingual_tokenizer.apply_chat_template(test_chat) for test_chat in test_chats]
        expected_tokens = [
            [3223, 366, 257, 4961, 5081, 18870, 13, 50257, 15947, 0, 50257],
            [3223, 366, 257, 4961, 5081, 18870, 13, 50257, 15947, 0, 50257, 37717, 220, 1353, 1677, 291, 13, 50257],
            [37717, 220, 1353, 1677, 291, 13, 50257, 15947, 0, 50257],
        ]
        for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens):
            self.assertListEqual(tokenized_chat, expected_tokens)