test_tokenization_whisper.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers.models.whisper import WhisperTokenizer
from transformers.testing_utils import slow

from ...test_tokenization_common import TokenizerTesterMixin


23
24
25
26
27
28
29
ES_CODE = 50262
EN_CODE = 50259
END_OF_TRANSCRIPT = 50257
START_OF_TRANSCRIPT = 50258
TRANSLATE = 50358
TRANSCRIBE = 50359
NOTIMESTAMPS = 50363
30
31
32
33
34
35


class WhisperTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
    tokenizer_class = WhisperTokenizer
    test_rust_tokenizer = False
    test_sentencepiece = False
36
    test_seq2seq = False
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    def setUp(self):
        super().setUp()
        tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        tokenizer.pad_token_id = 50256
        tokenizer.pad_token = "<|endoftext|>"
        tokenizer.save_pretrained(self.tmpdirname)

    def test_convert_token_and_id(self):
        """Test ``_convert_token_to_id`` and ``_convert_id_to_token``."""
        token = "Where"
        token_id = 14436

        self.assertEqual(self.get_tokenizer()._convert_token_to_id(token), token_id)
        self.assertEqual(self.get_tokenizer()._convert_id_to_token(token_id), token)

    def test_get_vocab(self):
        vocab_keys = list(self.get_tokenizer().get_vocab().keys())

        self.assertEqual(vocab_keys[0], "!")
        self.assertEqual(vocab_keys[1], '"')
        self.assertEqual(vocab_keys[-1], "<|notimestamps|>")
        self.assertEqual(len(vocab_keys), 50364)

    def test_vocab_size(self):
Arthur's avatar
Arthur committed
62
        self.assertEqual(self.get_tokenizer().vocab_size, 50258)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

    def test_full_tokenizer(self):
        tokenizer = WhisperTokenizer.from_pretrained(self.tmpdirname)

        tokens = tokenizer.tokenize("This is a test")
        self.assertListEqual(tokens, ["This", "Ġis", "Ġa", "Ġ", "test"])

        self.assertListEqual(
            tokenizer.convert_tokens_to_ids(tokens),
            [5723, 307, 257, 220, 31636],
        )

        tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
        self.assertListEqual(
            tokens,
            # fmt: off
            ['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
            # fmt: on
        )
        ids = tokenizer.convert_tokens_to_ids(tokens)
        self.assertListEqual(ids, [40, 390, 4232, 294, 1722, 25743, 11, 293, 220, 11176, 307, 16720, 526, 13])

        back_tokens = tokenizer.convert_ids_to_tokens(ids)
        self.assertListEqual(
            back_tokens,
            # fmt: off
            ['I', 'Ġwas', 'Ġborn', 'Ġin', 'Ġ9', '2000', ',', 'Ġand', 'Ġ', 'this', 'Ġis', 'Ġfals', 'é', '.'],
            # fmt: on
        )

    def test_tokenizer_slow_store_full_signature(self):
        pass

    @slow
    def test_tokenizer_integration(self):
        # fmt: off
99
        expected_encoding = {'input_ids': [[50257, 50362, 41762, 364, 357, 36234, 1900, 355, 12972, 13165, 354, 12, 35636, 364, 290, 12972, 13165, 354, 12, 5310, 13363, 12, 4835, 8, 3769, 2276, 12, 29983, 45619, 357, 13246, 51, 11, 402, 11571, 12, 17, 11, 5564, 13246, 38586, 11, 16276, 44, 11, 4307, 346, 33, 861, 11, 16276, 7934, 23029, 329, 12068, 15417, 28491, 357, 32572, 52, 8, 290, 12068, 15417, 16588, 357, 32572, 38, 8, 351, 625, 3933, 10, 2181, 13363, 4981, 287, 1802, 10, 8950, 290, 2769, 48817, 1799, 1022, 449, 897, 11, 9485, 15884, 354, 290, 309, 22854, 37535, 13, 50256], [50257, 50362, 13246, 51, 318, 3562, 284, 662, 12, 27432, 2769, 8406, 4154, 282, 24612, 422, 9642, 9608, 276, 2420, 416, 26913, 21143, 319, 1111, 1364, 290, 826, 4732, 287, 477, 11685, 13, 50256], [50257, 50362, 464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13, 50256]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}  # noqa: E501
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        # fmt: on

        self.tokenizer_integration_test_util(
            expected_encoding=expected_encoding, model_name="openai/whisper-tiny.en", padding=False
        )


class SpeechToTextTokenizerMultilinguialTest(unittest.TestCase):
    checkpoint_name = "openai/whisper-small.en"

    @classmethod
    def setUpClass(cls):
        cls.tokenizer: WhisperTokenizer = WhisperTokenizer.from_pretrained(cls.checkpoint_name)
        return cls

    def test_tokenizer_equivalence(self):
        text = "다람쥐 헌 쳇바퀴에 타고파"
117
118
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="korean")
        monolingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny.en")
119

120
121
        monolingual_tokens = monolingual_tokenizer.encode(text, add_special_tokens=False)
        multilingual_tokens = multilingual_tokenizer.encode(text, add_special_tokens=False)
122

123
        assert monolingual_tokenizer.decode(monolingual_tokens) == text
124
        assert multilingual_tokenizer.decode(multilingual_tokens) == text
125
        assert len(monolingual_tokens) > len(multilingual_tokens)
126
127
128
129
130
131
132
133
134
135
136
137
138
139

        # fmt: off
        EXPECTED_ENG = [
            46695, 97, 167, 252, 234, 168, 98, 238, 220, 169,
            245, 234, 23821, 111, 229, 167, 108, 242, 169, 222,
            112, 168, 245, 238, 220, 169, 225, 222, 166, 111,
            254, 169, 234, 234
        ]
        EXPECTED_MULTI = [
            9835, 22855, 168, 98, 238, 13431, 234, 43517, 229, 47053,
            169, 222, 19086, 19840, 1313, 17974
        ]
        # fmt: on

140
        self.assertListEqual(monolingual_tokens, EXPECTED_ENG)
141
142
143
        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

    def test_tokenizer_special(self):
144
145
146
147
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="english", task="transcribe"
        )
        text = "Hey! How are you feeling? J'ai l'impression que 郷さん est prêt"
148
149
150
151

        multilingual_tokens = multilingual_tokenizer.encode(text)

        # fmt: off
152
        # format: <|startoftranscript|> <|lang-id|> <|task|> <|notimestamps|> ... transcription ids ... <|endoftext|>
153
        EXPECTED_MULTI = [
154
155
156
            START_OF_TRANSCRIPT, EN_CODE, TRANSCRIBE, NOTIMESTAMPS, 7057, 0, 1012, 366, 291,
            2633, 30, 508, 6, 1301, 287, 6, 36107, 631, 220, 11178,
            115, 15567, 871, 44393, END_OF_TRANSCRIPT
157
        ]
158
159
160
161
        EXPECTED_SPECIAL_TEXT = (
            "<|startoftranscript|><|en|><|transcribe|><|notimestamps|>Hey! How are you feeling? "
            "J'ai l'impression que 郷さん est prêt<|endoftext|>"
        )
162
163
164
165
        # fmt: on

        self.assertListEqual(multilingual_tokens, EXPECTED_MULTI)

166
167
        special_transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=False)
        self.assertEqual(special_transcript, EXPECTED_SPECIAL_TEXT)
168
169

        transcript = multilingual_tokenizer.decode(multilingual_tokens, skip_special_tokens=True)
170
        self.assertEqual(transcript, text)
171
172
173
174

    def test_vocab_size(self):
        self.assertEqual(self.tokenizer.vocab_size, 50257)

175
    # Copied from transformers.tests.speech_to_test.test_tokenization_speech_to_text.py
176
177
178
179
180
181
182
183
184
    def test_tokenizer_decode_ignores_language_codes(self):
        self.assertIn(ES_CODE, self.tokenizer.all_special_ids)
        generated_ids = [ES_CODE, 4, 1601, 47, 7647, 2]
        result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
        expected_spanish = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
        self.assertEqual(result, expected_spanish)
        self.assertNotIn(self.tokenizer.eos_token, result)

    def test_batch_encoding(self):
185
186
187
188
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )
        batch = ["El gato ", "El gato se sentó"]
189
190
191
192
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
193
194
195
196
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 220,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, ES_CODE, TRANSLATE, NOTIMESTAMPS, 17356, 290, 2513, 369,
             2279, 812, END_OF_TRANSCRIPT]
197
198
199
200
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def test_set_prefix_tokens(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained(
            "openai/whisper-tiny", language="spanish", task="translate"
        )

        # change the language prefix token from Spanish to English
        multilingual_tokenizer.set_prefix_tokens(language="english")

        batch = ["the cat", "the cat sat"]
        batch_output = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids

        # fmt: off
        EXPECTED_MULTI = [
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             END_OF_TRANSCRIPT, END_OF_TRANSCRIPT],
            [START_OF_TRANSCRIPT, EN_CODE, TRANSLATE, NOTIMESTAMPS, 3322, 3857,
             3227, END_OF_TRANSCRIPT]
        ]
        # fmt: on

        self.assertListEqual(batch_output, EXPECTED_MULTI)

    def test_batch_encoding_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish")
        batch = ["hola güey", "que onda"]
        batch_encoding = multilingual_tokenizer.batch_encode_plus(batch, padding=True).input_ids
        transcription = multilingual_tokenizer.batch_decode(batch_encoding, skip_special_tokens=True)
        self.assertListEqual(batch, transcription)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    def test_offset_decoding(self):
        multilingual_tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny")
        # fmt: off
        INPUT_TOKENS = [
            50258, 50259, 50359, 50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724, 50724, 366,
            382, 4048, 382, 257, 361, 18459, 13065, 13, 2221, 13,
            7145, 74, 325, 38756, 311, 29822, 7563, 412, 472, 709,
            294, 264, 51122, 51122, 912, 636, 300, 2221, 13, 2741,
            5767, 1143, 281, 7319, 702, 7798, 13, 400, 2221, 13,
            2619, 4004, 811, 2709, 702, 51449, 51449, 50257
        ]
        # fmt: on
        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]

        self.assertEqual(
            output,
            [
                {
                    "text": (
                        " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles"
                    ),
                    "timestamp": (0.0, 7.2),
                },
                {
                    "text": (
                        " are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the"
                    ),
                    "timestamp": (7.2, 15.16),
                },
                {
                    "text": " same way that Mr. Carker used to flash his teeth. And Mr. John Colier gives his",
                    "timestamp": (15.16, 21.7),
                },
            ],
        )
Arthur's avatar
Arthur committed
268
269
270
271
272
273
274
275
276
        # test `decode_with_offsets`
        output = multilingual_tokenizer.decode(INPUT_TOKENS, decode_with_timestamps=True)
        self.assertEqual(
            output,
            "<|startoftranscript|><|en|><|transcribe|><|0.00|> Lennils, pictures are a sort of upguards and atom"
            " paintings, and Mason's exquisite idles<|7.20|><|7.20|> are as national as a jingo poem. Mr. Birkut"
            " Foster's landscapes smile at one much in the<|15.16|><|15.16|> same way that Mr. Carker used to flash"
            " his teeth. And Mr. John Colier gives his<|21.70|><|21.70|><|endoftext|>",
        )
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        # test a single sequence with timestamps
        # fmt: off
        INPUT_TOKENS = [
            50364, 441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(
            output[0],
            {
                "text": " Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite idles",
                "timestamp": (0.0, 7.2),
            },
        )

        # test a sequence without a single timestamps
        # fmt: off
        INPUT_TOKENS = [
            441, 1857, 4174, 11, 5242, 366,
            257, 1333, 295, 493, 2794, 2287, 293, 12018, 14880, 11,
            293, 25730, 311, 454, 34152, 4496, 904, 50724
        ]
        # fmt: on

        output = multilingual_tokenizer.decode(INPUT_TOKENS, output_offsets=True)["offsets"]
        self.assertEqual(output, [])