".github/vscode:/vscode.git/clone" did not exist on "350bbea214020f2f9a90129ee6bf6af2b3448d9c"
test_modeling_xlm.py 15.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25


26
if is_torch_available():
27
    import torch
28
29
30
31
    from transformers import (
        XLMConfig,
        XLMModel,
        XLMWithLMHeadModel,
32
        XLMForTokenClassification,
33
34
35
        XLMForQuestionAnswering,
        XLMForSequenceClassification,
        XLMForQuestionAnsweringSimple,
36
        XLMForMultipleChoice,
37
    )
38
    from transformers.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
39
40


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class XLMModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_lengths = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.gelu_activation = True
        self.sinusoidal_embeddings = False
        self.causal = False
        self.asm = False
        self.n_langs = 2
        self.vocab_size = 99
        self.n_special = 0
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
67
        self.num_labels = 2
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
        self.num_choices = 4
        self.summary_type = "last"
        self.use_proj = True
        self.scope = None
        self.bos_token_id = 0

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
        input_mask = ids_tensor([self.batch_size, self.seq_length], 2).float()

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
95
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

        config = XLMConfig(
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
114
            num_labels=self.num_labels,
115
            bos_token_id=self.bos_token_id,
116
        )
thomwolf's avatar
thomwolf committed
117

118
        return (
119
120
121
122
123
124
125
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
126
            choice_labels,
127
            input_mask,
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
142
        choice_labels,
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        input_mask,
    ):
        model = XLMModel(config=config)
        model.to(torch_device)
        model.eval()
        outputs = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        outputs = model(input_ids, langs=token_type_ids)
        outputs = model(input_ids)
        sequence_output = outputs[0]
        result = {
            "sequence_output": sequence_output,
        }
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, self.hidden_size]
        )

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
168
        choice_labels,
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        input_mask,
    ):
        model = XLMWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

        loss, logits = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)

        result = {
            "loss": loss,
            "logits": logits,
        }

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.vocab_size])

    def create_and_check_xlm_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
194
        choice_labels,
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        input_mask,
    ):
        model = XLMForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)

        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
        loss, start_logits, end_logits = outputs

        result = {
            "loss": loss,
            "start_logits": start_logits,
            "end_logits": end_logits,
        }
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
224
        choice_labels,
225
226
227
228
229
230
231
232
233
234
        input_mask,
    ):
        model = XLMForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)
        start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits = outputs

        outputs = model(
235
            input_ids,
236
237
238
239
240
241
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
thomwolf's avatar
thomwolf committed
242

243
244
245
246
247
248
249
        outputs = model(
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
thomwolf's avatar
thomwolf committed
250

251
        (total_loss,) = outputs
thomwolf's avatar
thomwolf committed
252

253
        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
254

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        (total_loss,) = outputs

        result = {
            "loss": total_loss,
            "start_top_log_probs": start_top_log_probs,
            "start_top_index": start_top_index,
            "end_top_log_probs": end_top_log_probs,
            "end_top_index": end_top_index,
            "cls_logits": cls_logits,
        }

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(
            list(result["start_top_log_probs"].size()), [self.batch_size, model.config.start_n_top]
        )
        self.parent.assertListEqual(
            list(result["start_top_index"].size()), [self.batch_size, model.config.start_n_top]
        )
        self.parent.assertListEqual(
            list(result["end_top_log_probs"].size()),
            [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(
            list(result["end_top_index"].size()), [self.batch_size, model.config.start_n_top * model.config.end_n_top],
        )
        self.parent.assertListEqual(list(result["cls_logits"].size()), [self.batch_size])

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
291
        choice_labels,
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        input_mask,
    ):
        model = XLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

        (logits,) = model(input_ids)
        loss, logits = model(input_ids, labels=sequence_labels)

        result = {
            "loss": loss,
            "logits": logits,
        }

        self.parent.assertListEqual(list(result["loss"].size()), [])
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.type_sequence_label_size])

309
    def create_and_check_xlm_token_classif(
310
311
312
313
314
315
316
317
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
318
        choice_labels,
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = XLMForTokenClassification(config)
        model.to(torch_device)
        model.eval()

        loss, logits = model(input_ids, attention_mask=input_mask, labels=token_labels)
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.seq_length, self.num_labels])
        self.check_loss_output(result)

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = XLMForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        loss, logits = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_choices])
        self.check_loss_output(result)

366
367
368
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
369
370
371
372
373
374
375
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
376
            choice_labels,
377
            input_mask,
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
class XLMModelTest(ModelTesterMixin, unittest.TestCase):

    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
393
            XLMForTokenClassification,
394
            XLMForMultipleChoice,
395
396
397
398
399
400
401
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
thomwolf's avatar
thomwolf committed
402

thomwolf's avatar
thomwolf committed
403
    def setUp(self):
404
        self.model_tester = XLMModelTester(self)
thomwolf's avatar
thomwolf committed
405
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
406
407

    def test_config(self):
thomwolf's avatar
thomwolf committed
408
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
409

thomwolf's avatar
thomwolf committed
410
411
412
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
416
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
417

418
419
420
421
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
422
423
424
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
425

thomwolf's avatar
thomwolf committed
426
427
428
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
429

430
    def test_xlm_token_classif(self):
431
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
432
        self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
433

434
435
436
437
    def test_xlm_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

438
    @slow
thomwolf's avatar
thomwolf committed
439
    def test_model_from_pretrained(self):
440
        for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
441
            model = XLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
442
            self.assertIsNotNone(model)
443
444


445
@require_torch
446
447
448
449
class XLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
450
        model.to(torch_device)
451
        input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device)  # the president
452
453
        expected_output_ids = [
            14,
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
        output_ids = model.generate(input_ids, do_sample=False)
476
        self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)