test_modeling_auto.py 23.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import sys
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20
from collections import OrderedDict
21
from pathlib import Path
thomwolf's avatar
thomwolf committed
22

23
24
import pytest

25
import transformers
26
from transformers import BertConfig, GPT2Model, is_safetensors_available, is_torch_available
27
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
28
from transformers.testing_utils import (
29
    DUMMY_UNKNOWN_IDENTIFIER,
30
    SMALL_MODEL_IDENTIFIER,
31
    RequestCounter,
32
33
34
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
35

36
from ..bert.test_modeling_bert import BertModelTester
37

38

Yih-Dar's avatar
Yih-Dar committed
39
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
40
41
42
43

from test_module.custom_configuration import CustomConfig  # noqa E402


44
if is_torch_available():
45
    import torch
46
    from test_module.custom_modeling import CustomModel
47

48
    from transformers import (
amyeroberts's avatar
amyeroberts committed
49
        AutoBackbone,
50
51
        AutoConfig,
        AutoModel,
52
53
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
54
55
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
56
        AutoModelForSeq2SeqLM,
57
        AutoModelForSequenceClassification,
58
        AutoModelForTableQuestionAnswering,
59
        AutoModelForTokenClassification,
60
61
62
63
64
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
65
        BertForTokenClassification,
66
        BertModel,
67
68
        FunnelBaseModel,
        FunnelModel,
69
70
        GPT2Config,
        GPT2LMHeadModel,
amyeroberts's avatar
amyeroberts committed
71
        ResNetBackbone,
72
73
74
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
75
76
        TapasConfig,
        TapasForQuestionAnswering,
amyeroberts's avatar
amyeroberts committed
77
        TimmBackbone,
78
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    from transformers.models.auto.modeling_auto import (
80
81
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
82
83
84
85
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
86
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
87
    )
thomwolf's avatar
thomwolf committed
88
89


90
@require_torch
thomwolf's avatar
thomwolf committed
91
class AutoModelTest(unittest.TestCase):
92
93
94
    def setUp(self):
        transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0

95
    @slow
thomwolf's avatar
thomwolf committed
96
    def test_model_from_pretrained(self):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)

        model = AutoModel.from_pretrained(model_name)
        model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertModel)

        self.assertEqual(len(loading_info["missing_keys"]), 0)
        # When using PyTorch checkpoint, the expected value is `8`. With `safetensors` checkpoint (if it is
        # installed), the expected value becomes `7`.
        EXPECTED_NUM_OF_UNEXPECTED_KEYS = 7 if is_safetensors_available() else 8
        self.assertEqual(len(loading_info["unexpected_keys"]), EXPECTED_NUM_OF_UNEXPECTED_KEYS)
        self.assertEqual(len(loading_info["mismatched_keys"]), 0)
        self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
114

thomwolf's avatar
thomwolf committed
115
116
    @slow
    def test_model_for_pretraining_from_pretrained(self):
117
118
119
120
121
122
123
124
125
126
127
128
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)

        model = AutoModelForPreTraining.from_pretrained(model_name)
        model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertForPreTraining)
        # Only one value should not be initialized and in the missing keys.
        for key, value in loading_info.items():
            self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
129

130
    @slow
LysandreJik's avatar
LysandreJik committed
131
    def test_lmhead_model_from_pretrained(self):
132
133
134
135
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)
LysandreJik's avatar
LysandreJik committed
136

137
138
139
140
        model = AutoModelWithLMHead.from_pretrained(model_name)
        model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertForMaskedLM)
LysandreJik's avatar
LysandreJik committed
141

142
143
    @slow
    def test_model_for_causal_lm(self):
144
145
146
147
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, GPT2Config)
148

149
150
151
152
        model = AutoModelForCausalLM.from_pretrained(model_name)
        model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, GPT2LMHeadModel)
153
154
155

    @slow
    def test_model_for_masked_lm(self):
156
157
158
159
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)
160

161
162
163
164
        model = AutoModelForMaskedLM.from_pretrained(model_name)
        model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertForMaskedLM)
165
166
167

    @slow
    def test_model_for_encoder_decoder_lm(self):
168
169
170
171
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, T5Config)
172

173
174
175
176
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
        model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, T5ForConditionalGeneration)
177

178
    @slow
LysandreJik's avatar
LysandreJik committed
179
    def test_sequence_classification_model_from_pretrained(self):
180
181
182
183
184
185
186
187
188
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)

        model = AutoModelForSequenceClassification.from_pretrained(model_name)
        model, loading_info = AutoModelForSequenceClassification.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertForSequenceClassification)
LysandreJik's avatar
LysandreJik committed
189

190
    @slow
LysandreJik's avatar
LysandreJik committed
191
    def test_question_answering_model_from_pretrained(self):
192
193
194
195
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)
LysandreJik's avatar
LysandreJik committed
196

197
198
199
200
        model = AutoModelForQuestionAnswering.from_pretrained(model_name)
        model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertForQuestionAnswering)
LysandreJik's avatar
LysandreJik committed
201

202
203
    @slow
    def test_table_question_answering_model_from_pretrained(self):
204
205
206
207
208
209
210
211
212
        model_name = "google/tapas-base"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, TapasConfig)

        model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
        model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, TapasForQuestionAnswering)
213

214
215
    @slow
    def test_token_classification_model_from_pretrained(self):
216
217
218
219
220
221
222
223
224
        model_name = "google-bert/bert-base-uncased"
        config = AutoConfig.from_pretrained(model_name)
        self.assertIsNotNone(config)
        self.assertIsInstance(config, BertConfig)

        model = AutoModelForTokenClassification.from_pretrained(model_name)
        model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, BertForTokenClassification)
225

amyeroberts's avatar
amyeroberts committed
226
227
228
229
230
231
232
233
234
235
236
237
238
    @slow
    def test_auto_backbone_timm_model_from_pretrained(self):
        # Configs can't be loaded for timm models
        model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True)

        with pytest.raises(ValueError):
            # We can't pass output_loading_info=True as we're loading from timm
            AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertIsInstance(model, TimmBackbone)

        # Check kwargs are correctly passed to the backbone
239
240
        model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_indices=(-2, -1))
        self.assertEqual(model.out_indices, (-2, -1))
amyeroberts's avatar
amyeroberts committed
241
242
243
244
245
246
247
248
249
250
251
252
253

        # Check out_features cannot be passed to Timm backbones
        with self.assertRaises(ValueError):
            _ = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_features=["stage1"])

    @slow
    def test_auto_backbone_from_pretrained(self):
        model = AutoBackbone.from_pretrained("microsoft/resnet-18")
        model, loading_info = AutoBackbone.from_pretrained("microsoft/resnet-18", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, ResNetBackbone)

        # Check kwargs are correctly passed to the backbone
254
255
256
        model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_indices=[-2, -1])
        self.assertEqual(model.out_indices, [-2, -1])
        self.assertEqual(model.out_features, ["stage3", "stage4"])
amyeroberts's avatar
amyeroberts committed
257
258
259
260
261

        model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_features=["stage2", "stage4"])
        self.assertEqual(model.out_indices, [2, 4])
        self.assertEqual(model.out_features, ["stage2", "stage4"])

Julien Chaumond's avatar
Julien Chaumond committed
262
263
264
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
265
266
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
267
268

    def test_from_identifier_from_model_type(self):
269
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
270
        self.assertIsInstance(model, RobertaForMaskedLM)
271
272
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

289
    def test_from_pretrained_dynamic_model_local(self):
290
291
292
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoModel.register(CustomConfig, CustomModel)
293

294
295
            config = CustomConfig(hidden_size=32)
            model = CustomModel(config)
296

297
298
299
300
301
302
303
304
305
306
307
308
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)

                new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.equal(p1, p2))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[CustomConfig]
309

310
    def test_from_pretrained_dynamic_model_distant(self):
311
312
313
314
315
316
317
        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False)

318
319
320
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

321
322
323
324
325
326
327
328
329
        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

330
331
332
333
        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

334
335
336
337
338
339
340
341
342
        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def test_from_pretrained_dynamic_model_distant_with_ref(self):
        model = AutoModel.from_pretrained("hf-internal-testing/ref_to_test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained(
            "hf-internal-testing/ref_to_test_dynamic_model_with_util", trust_remote_code=True
        )
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    def test_from_pretrained_dynamic_model_with_period(self):
        # We used to have issues where repos with "." in the name would cause issues because the Python
        # import machinery would treat that as a directory separator, so we test that case

        # If remote code is not set, we will time out when asking whether to load the model.
        with self.assertRaises(ValueError):
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0")
        # If remote code is disabled, we can't load this config.
        with self.assertRaises(ValueError):
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=False)

        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test that it works with a custom cache dir too
        with tempfile.TemporaryDirectory() as tmp_dir:
            model = AutoModel.from_pretrained(
                "hf-internal-testing/test_dynamic_model_v1.0", trust_remote_code=True, cache_dir=tmp_dir
            )
            self.assertEqual(model.__class__.__name__, "NewModel")

392
    def test_new_model_registration(self):
393
        AutoConfig.register("custom", CustomConfig)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
410
411
                        auto_class.register(BertConfig, CustomModel)
                    auto_class.register(CustomConfig, CustomModel)
412
413
414
415
416
417
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
418
                    config = CustomConfig(**tiny_config.to_dict())
419
                    model = auto_class.from_config(config)
420
                    self.assertIsInstance(model, CustomModel)
421
422
423
424

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
425
426
                        # The model is a CustomModel but from the new dynamically imported class.
                        self.assertIsInstance(new_model, CustomModel)
427
428

        finally:
429
430
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
431
432
433
434
435
436
437
438
439
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
440
441
                if CustomConfig in mapping._extra_content:
                    del mapping._extra_content[CustomConfig]
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    def test_from_pretrained_dynamic_model_conflict(self):
        class NewModelConfigLocal(BertConfig):
            model_type = "new-model"

        class NewModel(BertModel):
            config_class = NewModelConfigLocal

        try:
            AutoConfig.register("new-model", NewModelConfigLocal)
            AutoModel.register(NewModelConfigLocal, NewModel)
            # If remote code is not set, the default is to use local
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model")
            self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal")

            # If remote code is disabled, we load the local one.
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=False)
            self.assertEqual(model.config.__class__.__name__, "NewModelConfigLocal")

            # If remote is enabled, we load from the Hub
            model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
            self.assertEqual(model.config.__class__.__name__, "NewModelConfig")

        finally:
            if "new-model" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["new-model"]
            if NewModelConfigLocal in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[NewModelConfigLocal]

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
        ):
            _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_tf_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")

    def test_model_from_flax_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
497
498
499
500
501
502

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
503
504
505
        self.assertEqual(counter["GET"], 0)
        self.assertEqual(counter["HEAD"], 1)
        self.assertEqual(counter.total_calls, 1)
506
507
508
509
510

        # With a sharded checkpoint
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
511
512
513
        self.assertEqual(counter["GET"], 0)
        self.assertEqual(counter["HEAD"], 1)
        self.assertEqual(counter.total_calls, 1)
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

    def test_attr_not_existing(self):
        from transformers.models.auto.auto_factory import _LazyAutoMapping

        _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")])
        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)

        with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"):
            _MODEL_MAPPING[BertConfig]

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel)

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)