test_modeling_auto.py 17 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import sys
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20
from collections import OrderedDict
21
from pathlib import Path
thomwolf's avatar
thomwolf committed
22

23
24
25
import pytest

from transformers import BertConfig, GPT2Model, is_torch_available
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
27
from transformers.testing_utils import (
28
    DUMMY_UNKNOWN_IDENTIFIER,
29
    SMALL_MODEL_IDENTIFIER,
30
    RequestCounter,
31
32
33
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
34

35
from ..bert.test_modeling_bert import BertModelTester
36

37

Yih-Dar's avatar
Yih-Dar committed
38
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
39
40
41
42

from test_module.custom_configuration import CustomConfig  # noqa E402


43
if is_torch_available():
44
45
    import torch

46
    from test_module.custom_modeling import CustomModel
47
48
49
    from transformers import (
        AutoConfig,
        AutoModel,
50
51
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
52
53
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
54
        AutoModelForSeq2SeqLM,
55
        AutoModelForSequenceClassification,
56
        AutoModelForTableQuestionAnswering,
57
        AutoModelForTokenClassification,
58
59
60
61
62
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
63
        BertForTokenClassification,
64
        BertModel,
65
66
        FunnelBaseModel,
        FunnelModel,
67
68
69
70
71
        GPT2Config,
        GPT2LMHeadModel,
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
72
73
        TapasConfig,
        TapasForQuestionAnswering,
74
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
75
    from transformers.models.auto.modeling_auto import (
76
77
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
78
79
80
81
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
82
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
83
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
87
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
88
89


90
@require_torch
thomwolf's avatar
thomwolf committed
91
class AutoModelTest(unittest.TestCase):
92
    @slow
thomwolf's avatar
thomwolf committed
93
    def test_model_from_pretrained(self):
94
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
95
96
97
98
99
100
101
102
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
103
104
105
106
107

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
108

thomwolf's avatar
thomwolf committed
109
110
    @slow
    def test_model_for_pretraining_from_pretrained(self):
111
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
118
119
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
120
            # Only one value should not be initialized and in the missing keys.
121
            for key, value in loading_info.items():
122
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
123

124
    @slow
LysandreJik's avatar
LysandreJik committed
125
    def test_lmhead_model_from_pretrained(self):
126
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
127
128
129
130
131
132
133
134
135
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

172
    @slow
LysandreJik's avatar
LysandreJik committed
173
    def test_sequence_classification_model_from_pretrained(self):
174
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
175
176
177
178
179
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
180
181
182
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
183
184
185
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

186
    @slow
LysandreJik's avatar
LysandreJik committed
187
    def test_question_answering_model_from_pretrained(self):
188
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
189
190
191
192
193
194
195
196
197
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

198
199
200
201
202
203
204
205
206
207
208
209
210
211
    @slow
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

212
213
    @slow
    def test_token_classification_model_from_pretrained(self):
214
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
215
216
217
218
219
220
221
222
223
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
224
225
226
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
227
228
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
229
230

    def test_from_identifier_from_model_type(self):
231
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
232
        self.assertIsInstance(model, RobertaForMaskedLM)
233
234
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

251
    def test_from_pretrained_dynamic_model_local(self):
252
253
254
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoModel.register(CustomConfig, CustomModel)
255

256
257
            config = CustomConfig(hidden_size=32)
            model = CustomModel(config)
258

259
260
261
262
263
264
265
266
267
268
269
270
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)

                new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.equal(p1, p2))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[CustomConfig]
271

272
273
274
275
276
277
278
279
    def test_from_pretrained_dynamic_model_distant(self):
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

280
    def test_new_model_registration(self):
281
        AutoConfig.register("custom", CustomConfig)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
298
299
                        auto_class.register(BertConfig, CustomModel)
                    auto_class.register(CustomConfig, CustomModel)
300
301
302
303
304
305
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
306
                    config = CustomConfig(**tiny_config.to_dict())
307
                    model = auto_class.from_config(config)
308
                    self.assertIsInstance(model, CustomModel)
309
310
311
312

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
313
314
                        # The model is a CustomModel but from the new dynamically imported class.
                        self.assertIsInstance(new_model, CustomModel)
315
316

        finally:
317
318
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
319
320
321
322
323
324
325
326
327
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
328
329
                if CustomConfig in mapping._extra_content:
                    del mapping._extra_content[CustomConfig]
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
        ):
            _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_tf_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")

    def test_model_from_flax_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)

        # With a sharded checkpoint
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
            self.assertEqual(counter.get_request_count, 0)
372
            self.assertEqual(counter.head_request_count, 1)
373
            self.assertEqual(counter.other_request_count, 0)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

    def test_attr_not_existing(self):

        from transformers.models.auto.auto_factory import _LazyAutoMapping

        _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")])
        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)

        with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"):
            _MODEL_MAPPING[BertConfig]

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel)

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)