test_modeling_auto.py 21.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import sys
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20
from collections import OrderedDict
21
from pathlib import Path
thomwolf's avatar
thomwolf committed
22

23
24
import pytest

25
from transformers import BertConfig, GPT2Model, is_safetensors_available, is_torch_available
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
27
from transformers.testing_utils import (
28
    DUMMY_UNKNOWN_IDENTIFIER,
29
    SMALL_MODEL_IDENTIFIER,
30
    RequestCounter,
31
32
33
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
34

35
from ..bert.test_modeling_bert import BertModelTester
36

37

Yih-Dar's avatar
Yih-Dar committed
38
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
39
40
41
42

from test_module.custom_configuration import CustomConfig  # noqa E402


43
if is_torch_available():
44
    import torch
45
    from test_module.custom_modeling import CustomModel
46

47
    from transformers import (
amyeroberts's avatar
amyeroberts committed
48
        AutoBackbone,
49
50
        AutoConfig,
        AutoModel,
51
52
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
53
54
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
55
        AutoModelForSeq2SeqLM,
56
        AutoModelForSequenceClassification,
57
        AutoModelForTableQuestionAnswering,
58
        AutoModelForTokenClassification,
59
60
61
62
63
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
64
        BertForTokenClassification,
65
        BertModel,
66
67
        FunnelBaseModel,
        FunnelModel,
68
69
        GPT2Config,
        GPT2LMHeadModel,
amyeroberts's avatar
amyeroberts committed
70
        ResNetBackbone,
71
72
73
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
74
75
        TapasConfig,
        TapasForQuestionAnswering,
amyeroberts's avatar
amyeroberts committed
76
        TimmBackbone,
77
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
78
    from transformers.models.auto.modeling_auto import (
79
80
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
81
82
83
84
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
85
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
86
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
90
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
91
92


93
@require_torch
thomwolf's avatar
thomwolf committed
94
class AutoModelTest(unittest.TestCase):
95
    @slow
thomwolf's avatar
thomwolf committed
96
    def test_model_from_pretrained(self):
97
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
98
99
100
101
102
103
104
105
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
106
107

            self.assertEqual(len(loading_info["missing_keys"]), 0)
108
109
110
111
            # When using PyTorch checkpoint, the expected value is `8`. With `safetensors` checkpoint (if it is
            # installed), the expected value becomes `7`.
            EXPECTED_NUM_OF_UNEXPECTED_KEYS = 7 if is_safetensors_available() else 8
            self.assertEqual(len(loading_info["unexpected_keys"]), EXPECTED_NUM_OF_UNEXPECTED_KEYS)
Lysandre Debut's avatar
Lysandre Debut committed
112
113
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
114

thomwolf's avatar
thomwolf committed
115
116
    @slow
    def test_model_for_pretraining_from_pretrained(self):
117
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
118
119
120
121
122
123
124
125
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
126
            # Only one value should not be initialized and in the missing keys.
127
            for key, value in loading_info.items():
128
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
129

130
    @slow
LysandreJik's avatar
LysandreJik committed
131
    def test_lmhead_model_from_pretrained(self):
132
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
133
134
135
136
137
138
139
140
141
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

178
    @slow
LysandreJik's avatar
LysandreJik committed
179
    def test_sequence_classification_model_from_pretrained(self):
180
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
181
182
183
184
185
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
186
187
188
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
189
190
191
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

192
    @slow
LysandreJik's avatar
LysandreJik committed
193
    def test_question_answering_model_from_pretrained(self):
194
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
195
196
197
198
199
200
201
202
203
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

204
205
206
207
208
209
210
211
212
213
214
215
216
217
    @slow
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

218
219
    @slow
    def test_token_classification_model_from_pretrained(self):
220
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
221
222
223
224
225
226
227
228
229
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

amyeroberts's avatar
amyeroberts committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    @slow
    def test_auto_backbone_timm_model_from_pretrained(self):
        # Configs can't be loaded for timm models
        model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True)

        with pytest.raises(ValueError):
            # We can't pass output_loading_info=True as we're loading from timm
            AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, output_loading_info=True)

        self.assertIsNotNone(model)
        self.assertIsInstance(model, TimmBackbone)

        # Check kwargs are correctly passed to the backbone
        model = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_indices=(-1, -2))
        self.assertEqual(model.out_indices, (-1, -2))

        # Check out_features cannot be passed to Timm backbones
        with self.assertRaises(ValueError):
            _ = AutoBackbone.from_pretrained("resnet18", use_timm_backbone=True, out_features=["stage1"])

    @slow
    def test_auto_backbone_from_pretrained(self):
        model = AutoBackbone.from_pretrained("microsoft/resnet-18")
        model, loading_info = AutoBackbone.from_pretrained("microsoft/resnet-18", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertIsInstance(model, ResNetBackbone)

        # Check kwargs are correctly passed to the backbone
        model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_indices=[-1, -2])
        self.assertEqual(model.out_indices, [-1, -2])
        self.assertEqual(model.out_features, ["stage4", "stage3"])

        model = AutoBackbone.from_pretrained("microsoft/resnet-18", out_features=["stage2", "stage4"])
        self.assertEqual(model.out_indices, [2, 4])
        self.assertEqual(model.out_features, ["stage2", "stage4"])

Julien Chaumond's avatar
Julien Chaumond committed
266
267
268
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
269
270
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
271
272

    def test_from_identifier_from_model_type(self):
273
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
274
        self.assertIsInstance(model, RobertaForMaskedLM)
275
276
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

293
    def test_from_pretrained_dynamic_model_local(self):
294
295
296
        try:
            AutoConfig.register("custom", CustomConfig)
            AutoModel.register(CustomConfig, CustomModel)
297

298
299
            config = CustomConfig(hidden_size=32)
            model = CustomModel(config)
300

301
302
303
304
305
306
307
308
309
310
311
312
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.save_pretrained(tmp_dir)

                new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.equal(p1, p2))

        finally:
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
            if CustomConfig in MODEL_MAPPING._extra_content:
                del MODEL_MAPPING._extra_content[CustomConfig]
313

314
315
316
317
    def test_from_pretrained_dynamic_model_distant(self):
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

318
319
320
321
322
323
324
325
326
        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

327
328
329
330
        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained("hf-internal-testing/test_dynamic_model_with_util", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

331
332
333
334
335
336
337
338
339
        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def test_from_pretrained_dynamic_model_distant_with_ref(self):
        model = AutoModel.from_pretrained("hf-internal-testing/ref_to_test_dynamic_model", trust_remote_code=True)
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # This one uses a relative import to a util file, this checks it is downloaded and used properly.
        model = AutoModel.from_pretrained(
            "hf-internal-testing/ref_to_test_dynamic_model_with_util", trust_remote_code=True
        )
        self.assertEqual(model.__class__.__name__, "NewModel")

        # Test model can be reloaded.
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            reloaded_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)

        self.assertEqual(reloaded_model.__class__.__name__, "NewModel")
        for p1, p2 in zip(model.parameters(), reloaded_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

368
    def test_new_model_registration(self):
369
        AutoConfig.register("custom", CustomConfig)
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
386
387
                        auto_class.register(BertConfig, CustomModel)
                    auto_class.register(CustomConfig, CustomModel)
388
389
390
391
392
393
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
394
                    config = CustomConfig(**tiny_config.to_dict())
395
                    model = auto_class.from_config(config)
396
                    self.assertIsInstance(model, CustomModel)
397
398
399
400

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
401
402
                        # The model is a CustomModel but from the new dynamically imported class.
                        self.assertIsInstance(new_model, CustomModel)
403
404

        finally:
405
406
            if "custom" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["custom"]
407
408
409
410
411
412
413
414
415
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
416
417
                if CustomConfig in mapping._extra_content:
                    del mapping._extra_content[CustomConfig]
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

    def test_repo_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, "bert-base is not a local folder and is not a valid model identifier"
        ):
            _ = AutoModel.from_pretrained("bert-base")

    def test_revision_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
        ):
            _ = AutoModel.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")

    def test_model_file_not_found(self):
        with self.assertRaisesRegex(
            EnvironmentError,
            "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin",
        ):
            _ = AutoModel.from_pretrained("hf-internal-testing/config-no-model")

    def test_model_from_tf_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_tf=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only")

    def test_model_from_flax_suggestion(self):
        with self.assertRaisesRegex(EnvironmentError, "Use `from_flax=True` to load this model"):
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-bert-flax-only")
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

    def test_cached_model_has_minimum_calls_to_head(self):
        # Make sure we have cached the model.
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            self.assertEqual(counter.get_request_count, 0)
            self.assertEqual(counter.head_request_count, 1)
            self.assertEqual(counter.other_request_count, 0)

        # With a sharded checkpoint
        _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        with RequestCounter() as counter:
            _ = AutoModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
            self.assertEqual(counter.get_request_count, 0)
460
            self.assertEqual(counter.head_request_count, 1)
461
            self.assertEqual(counter.other_request_count, 0)
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479

    def test_attr_not_existing(self):
        from transformers.models.auto.auto_factory import _LazyAutoMapping

        _CONFIG_MAPPING_NAMES = OrderedDict([("bert", "BertConfig")])
        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GhostModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)

        with pytest.raises(ValueError, match=r"Could not find GhostModel neither in .* nor in .*!"):
            _MODEL_MAPPING[BertConfig]

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "BertModel")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], BertModel)

        _MODEL_MAPPING_NAMES = OrderedDict([("bert", "GPT2Model")])
        _MODEL_MAPPING = _LazyAutoMapping(_CONFIG_MAPPING_NAMES, _MODEL_MAPPING_NAMES)
        self.assertEqual(_MODEL_MAPPING[BertConfig], GPT2Model)