"tests/test_modeling_mpnet.py" did not exist on "c89bdfbe720bc8f41c7dc6db5473a2cb0955f224"
test_optimization.py 5.94 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20

21
from transformers import is_torch_available
22
from transformers.testing_utils import require_torch
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24


25
if is_torch_available():
thomwolf's avatar
thomwolf committed
26
    import torch
27
    from torch import nn
thomwolf's avatar
thomwolf committed
28

29
    from transformers import (
30
        Adafactor,
31
32
33
34
35
36
        AdamW,
        get_constant_schedule,
        get_constant_schedule_with_warmup,
        get_cosine_schedule_with_warmup,
        get_cosine_with_hard_restarts_schedule_with_warmup,
        get_linear_schedule_with_warmup,
37
        get_polynomial_decay_schedule_with_warmup,
38
    )
thomwolf's avatar
thomwolf committed
39

lukovnikov's avatar
lukovnikov committed
40

thomwolf's avatar
thomwolf committed
41
42
43
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
44
        lrs.append(scheduler.get_lr()[0])
thomwolf's avatar
thomwolf committed
45
46
47
        scheduler.step()
    return lrs

48

49
50
51
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
    lrs = []
    for step in range(num_steps):
52
        lrs.append(scheduler.get_lr()[0])
53
54
        scheduler.step()
        if step == num_steps // 2:
55
            with tempfile.TemporaryDirectory() as tmpdirname:
56
                file_name = os.path.join(tmpdirname, "schedule.bin")
57
58
59
60
61
62
                torch.save(scheduler.state_dict(), file_name)

                state_dict = torch.load(file_name)
                scheduler.load_state_dict(state_dict)
    return lrs

63

64
@require_torch
65
66
67
68
69
70
class OptimizationTest(unittest.TestCase):
    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
71
    def test_adam_w(self):
72
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
73
        target = torch.tensor([0.4, 0.2, -0.5])
74
        criterion = nn.MSELoss()
thomwolf's avatar
thomwolf committed
75
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
76
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
77
        for _ in range(100):
thomwolf's avatar
thomwolf committed
78
            loss = criterion(w, target)
79
80
            loss.backward()
            optimizer.step()
81
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
thomwolf's avatar
thomwolf committed
82
            w.grad.zero_()
83
84
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)

85
86
87
    def test_adafactor(self):
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
        target = torch.tensor([0.4, 0.2, -0.5])
88
        criterion = nn.MSELoss()
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
        # No warmup, constant schedule, no gradient clipping
        optimizer = Adafactor(
            params=[w],
            lr=1e-2,
            eps=(1e-30, 1e-3),
            clip_threshold=1.0,
            decay_rate=-0.8,
            beta1=None,
            weight_decay=0.0,
            relative_step=False,
            scale_parameter=False,
            warmup_init=False,
        )
        for _ in range(1000):
            loss = criterion(w, target)
            loss.backward()
            optimizer.step()
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
            w.grad.zero_()
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)

110

111
@require_torch
lukovnikov's avatar
lukovnikov committed
112
class ScheduleInitTest(unittest.TestCase):
113
    m = nn.Linear(50, 50) if is_torch_available() else None
114
    optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
thomwolf's avatar
thomwolf committed
115
116
    num_steps = 10

117
    def assertListAlmostEqual(self, list1, list2, tol, msg=None):
thomwolf's avatar
thomwolf committed
118
119
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
120
121
122
123
124
125
126
127
128
129
130
            self.assertAlmostEqual(a, b, delta=tol, msg=msg)

    def test_schedulers(self):

        common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10}
        # schedulers doct format
        # function: (sched_args_dict, expected_learning_rates)
        scheds = {
            get_constant_schedule: ({}, [10.0] * self.num_steps),
            get_constant_schedule_with_warmup: (
                {"num_warmup_steps": 4},
131
                [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
132
133
134
            ),
            get_linear_schedule_with_warmup: (
                {**common_kwargs},
135
                [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
136
137
138
            ),
            get_cosine_schedule_with_warmup: (
                {**common_kwargs},
139
                [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
140
141
142
            ),
            get_cosine_with_hard_restarts_schedule_with_warmup: (
                {**common_kwargs, "num_cycles": 2},
143
                [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
144
            ),
145
146
            get_polynomial_decay_schedule_with_warmup: (
                {**common_kwargs, "power": 2.0, "lr_end": 1e-7},
147
                [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
148
            ),
149
150
151
152
153
154
        }

        for scheduler_func, data in scheds.items():
            kwargs, expected_learning_rates = data

            scheduler = scheduler_func(self.optimizer, **kwargs)
155
            self.assertEqual(len([scheduler.get_lr()[0]]), 1)
156
157
            lrs_1 = unwrap_schedule(scheduler, self.num_steps)
            self.assertListAlmostEqual(
Lysandre's avatar
Format  
Lysandre committed
158
159
160
161
                lrs_1,
                expected_learning_rates,
                tol=1e-2,
                msg=f"failed for {scheduler_func} in normal scheduler",
162
163
164
165
            )

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
166
            self.assertListEqual(lrs_1, lrs_2, msg=f"failed for {scheduler_func} in save and reload")