test_optimization.py 4.82 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20

21
from transformers import is_torch_available
22
from transformers.testing_utils import require_torch
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24


25
if is_torch_available():
thomwolf's avatar
thomwolf committed
26
27
    import torch

28
29
30
31
32
33
34
35
    from transformers import (
        AdamW,
        get_constant_schedule,
        get_constant_schedule_with_warmup,
        get_cosine_schedule_with_warmup,
        get_cosine_with_hard_restarts_schedule_with_warmup,
        get_linear_schedule_with_warmup,
    )
thomwolf's avatar
thomwolf committed
36

lukovnikov's avatar
lukovnikov committed
37

thomwolf's avatar
thomwolf committed
38
39
40
41
42
43
44
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
    return lrs

45

46
47
48
49
50
51
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
    lrs = []
    for step in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
        if step == num_steps // 2:
52
            with tempfile.TemporaryDirectory() as tmpdirname:
53
                file_name = os.path.join(tmpdirname, "schedule.bin")
54
55
56
57
58
59
                torch.save(scheduler.state_dict(), file_name)

                state_dict = torch.load(file_name)
                scheduler.load_state_dict(state_dict)
    return lrs

60

61
@require_torch
62
63
64
65
66
67
class OptimizationTest(unittest.TestCase):
    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
68
    def test_adam_w(self):
69
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
70
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
71
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
72
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
73
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
74
        for _ in range(100):
thomwolf's avatar
thomwolf committed
75
            loss = criterion(w, target)
76
77
            loss.backward()
            optimizer.step()
78
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
thomwolf's avatar
thomwolf committed
79
            w.grad.zero_()
80
81
82
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)


83
@require_torch
lukovnikov's avatar
lukovnikov committed
84
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
85
    m = torch.nn.Linear(50, 50) if is_torch_available() else None
86
    optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
thomwolf's avatar
thomwolf committed
87
88
    num_steps = 10

89
    def assertListAlmostEqual(self, list1, list2, tol, msg=None):
thomwolf's avatar
thomwolf committed
90
91
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
            self.assertAlmostEqual(a, b, delta=tol, msg=msg)

    def test_schedulers(self):

        common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10}
        # schedulers doct format
        # function: (sched_args_dict, expected_learning_rates)
        scheds = {
            get_constant_schedule: ({}, [10.0] * self.num_steps),
            get_constant_schedule_with_warmup: (
                {"num_warmup_steps": 4},
                [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
            ),
            get_linear_schedule_with_warmup: (
                {**common_kwargs},
                [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0],
            ),
            get_cosine_schedule_with_warmup: (
                {**common_kwargs},
                [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0],
            ),
            get_cosine_with_hard_restarts_schedule_with_warmup: (
                {**common_kwargs, "num_cycles": 2},
                [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0],
            ),
        }

        for scheduler_func, data in scheds.items():
            kwargs, expected_learning_rates = data

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_1 = unwrap_schedule(scheduler, self.num_steps)
            self.assertEqual(len(lrs_1[0]), 1)
            self.assertListAlmostEqual(
                [l[0] for l in lrs_1],
                expected_learning_rates,
                tol=1e-2,
                msg=f"failed for {scheduler_func} in normal scheduler",
            )

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
            self.assertListEqual(
                [l[0] for l in lrs_1], [l[0] for l in lrs_2], msg=f"failed for {scheduler_func} in save and reload"
            )