test_optimization.py 5.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
20

21
from transformers import is_torch_available
22
from transformers.testing_utils import require_torch
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24


25
if is_torch_available():
thomwolf's avatar
thomwolf committed
26
27
    import torch

28
    from transformers import (
29
        Adafactor,
30
31
32
33
34
35
        AdamW,
        get_constant_schedule,
        get_constant_schedule_with_warmup,
        get_cosine_schedule_with_warmup,
        get_cosine_with_hard_restarts_schedule_with_warmup,
        get_linear_schedule_with_warmup,
36
        get_polynomial_decay_schedule_with_warmup,
37
    )
thomwolf's avatar
thomwolf committed
38

lukovnikov's avatar
lukovnikov committed
39

thomwolf's avatar
thomwolf committed
40
41
42
43
44
45
46
def unwrap_schedule(scheduler, num_steps=10):
    lrs = []
    for _ in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
    return lrs

47

48
49
50
51
52
53
def unwrap_and_save_reload_schedule(scheduler, num_steps=10):
    lrs = []
    for step in range(num_steps):
        scheduler.step()
        lrs.append(scheduler.get_lr())
        if step == num_steps // 2:
54
            with tempfile.TemporaryDirectory() as tmpdirname:
55
                file_name = os.path.join(tmpdirname, "schedule.bin")
56
57
58
59
60
61
                torch.save(scheduler.state_dict(), file_name)

                state_dict = torch.load(file_name)
                scheduler.load_state_dict(state_dict)
    return lrs

62

63
@require_torch
64
65
66
67
68
69
class OptimizationTest(unittest.TestCase):
    def assertListAlmostEqual(self, list1, list2, tol):
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
            self.assertAlmostEqual(a, b, delta=tol)

thomwolf's avatar
thomwolf committed
70
    def test_adam_w(self):
71
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
thomwolf's avatar
thomwolf committed
72
        target = torch.tensor([0.4, 0.2, -0.5])
thomwolf's avatar
thomwolf committed
73
        criterion = torch.nn.MSELoss()
thomwolf's avatar
thomwolf committed
74
        # No warmup, constant schedule, no gradient clipping
thomwolf's avatar
thomwolf committed
75
        optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0)
76
        for _ in range(100):
thomwolf's avatar
thomwolf committed
77
            loss = criterion(w, target)
78
79
            loss.backward()
            optimizer.step()
80
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
thomwolf's avatar
thomwolf committed
81
            w.grad.zero_()
82
83
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    def test_adafactor(self):
        w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True)
        target = torch.tensor([0.4, 0.2, -0.5])
        criterion = torch.nn.MSELoss()
        # No warmup, constant schedule, no gradient clipping
        optimizer = Adafactor(
            params=[w],
            lr=1e-2,
            eps=(1e-30, 1e-3),
            clip_threshold=1.0,
            decay_rate=-0.8,
            beta1=None,
            weight_decay=0.0,
            relative_step=False,
            scale_parameter=False,
            warmup_init=False,
        )
        for _ in range(1000):
            loss = criterion(w, target)
            loss.backward()
            optimizer.step()
            w.grad.detach_()  # No zero_grad() function on simple tensors. we do it ourselves.
            w.grad.zero_()
        self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2)

109

110
@require_torch
lukovnikov's avatar
lukovnikov committed
111
class ScheduleInitTest(unittest.TestCase):
thomwolf's avatar
thomwolf committed
112
    m = torch.nn.Linear(50, 50) if is_torch_available() else None
113
    optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None
thomwolf's avatar
thomwolf committed
114
115
    num_steps = 10

116
    def assertListAlmostEqual(self, list1, list2, tol, msg=None):
thomwolf's avatar
thomwolf committed
117
118
        self.assertEqual(len(list1), len(list2))
        for a, b in zip(list1, list2):
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
            self.assertAlmostEqual(a, b, delta=tol, msg=msg)

    def test_schedulers(self):

        common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10}
        # schedulers doct format
        # function: (sched_args_dict, expected_learning_rates)
        scheds = {
            get_constant_schedule: ({}, [10.0] * self.num_steps),
            get_constant_schedule_with_warmup: (
                {"num_warmup_steps": 4},
                [2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
            ),
            get_linear_schedule_with_warmup: (
                {**common_kwargs},
                [5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25, 0.0],
            ),
            get_cosine_schedule_with_warmup: (
                {**common_kwargs},
                [5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38, 0.0],
            ),
            get_cosine_with_hard_restarts_schedule_with_warmup: (
                {**common_kwargs, "num_cycles": 2},
                [5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46, 0.0],
            ),
144
145
146
147
            get_polynomial_decay_schedule_with_warmup: (
                {**common_kwargs, "power": 2.0, "lr_end": 1e-7},
                [5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156, 1e-07],
            ),
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        }

        for scheduler_func, data in scheds.items():
            kwargs, expected_learning_rates = data

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_1 = unwrap_schedule(scheduler, self.num_steps)
            self.assertEqual(len(lrs_1[0]), 1)
            self.assertListAlmostEqual(
                [l[0] for l in lrs_1],
                expected_learning_rates,
                tol=1e-2,
                msg=f"failed for {scheduler_func} in normal scheduler",
            )

            scheduler = scheduler_func(self.optimizer, **kwargs)
            lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps)
            self.assertListEqual(
                [l[0] for l in lrs_1], [l[0] for l in lrs_2], msg=f"failed for {scheduler_func} in save and reload"
            )