test_pipelines_text_generation.py 14.6 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
18
19
20
21
22
23
from transformers import (
    MODEL_FOR_CAUSAL_LM_MAPPING,
    TF_MODEL_FOR_CAUSAL_LM_MAPPING,
    TextGenerationPipeline,
    logging,
    pipeline,
)
24
from transformers.testing_utils import (
25
    CaptureLogger,
26
    is_pipeline_test,
27
28
29
    require_accelerate,
    require_tf,
    require_torch,
30
    require_torch_accelerator,
31
    require_torch_gpu,
32
    require_torch_or_tf,
33
    torch_device,
34
)
35

36
from .test_pipelines_common import ANY
37
38


39
@is_pipeline_test
40
@require_torch_or_tf
41
class TextGenerationPipelineTests(unittest.TestCase):
42
43
    model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
    tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING
44

45
46
47
48
49
50
51
52
53
    @require_torch
    def test_small_model_pt(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt")
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
54
55
56
57
                    "generated_text": (
                        "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                        " oscope. FiliFili@@"
                    )
58
59
60
                }
            ],
        )
61

62
63
64
65
66
67
        outputs = text_generator(["This is a test", "This is a second test"])
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
71
                        "generated_text": (
                            "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope."
                            " oscope. FiliFili@@"
                        )
72
73
74
75
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
79
                        "generated_text": (
                            "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy"
                            " oscope. oscope. FiliFili@@"
                        )
80
81
                    }
                ],
82
83
84
85
86
87
88
89
90
91
92
            ],
        )

        outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True)
        self.assertEqual(
            outputs,
            [
                {"generated_token_ids": ANY(list)},
                {"generated_token_ids": ANY(list)},
            ],
        )
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        ## -- test tokenizer_kwargs
        test_str = "testing tokenizer kwargs. using truncation must result in a different generation."
        output_str, output_str_with_truncation = (
            text_generator(test_str, do_sample=False, return_full_text=False)[0]["generated_text"],
            text_generator(
                test_str,
                do_sample=False,
                return_full_text=False,
                truncation=True,
                max_length=3,
            )[0]["generated_text"],
        )
        assert output_str != output_str_with_truncation  # results must be different because one hd truncation

        # -- what is the point of this test? padding is hardcoded False in the pipeline anyway
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id
        text_generator.tokenizer.pad_token = "<pad>"
        outputs = text_generator(
            ["This is a test", "This is a second test"],
            do_sample=True,
            num_return_sequences=2,
            batch_size=2,
            return_tensors=True,
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
                [
                    {"generated_token_ids": ANY(list)},
                    {"generated_token_ids": ANY(list)},
                ],
129
130
            ],
        )
131

132
133
134
    @require_tf
    def test_small_model_tf(self):
        text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf")
135

136
137
138
139
140
141
        # Using `do_sample=False` to force deterministic output
        outputs = text_generator("This is a test", do_sample=False)
        self.assertEqual(
            outputs,
            [
                {
Sylvain Gugger's avatar
Sylvain Gugger committed
142
143
144
145
                    "generated_text": (
                        "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                        " please,"
                    )
146
147
148
                }
            ],
        )
149

150
151
152
153
154
155
        outputs = text_generator(["This is a test", "This is a second test"], do_sample=False)
        self.assertEqual(
            outputs,
            [
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
156
157
158
159
                        "generated_text": (
                            "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵"
                            " please,"
                        )
160
161
162
163
                    }
                ],
                [
                    {
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
167
                        "generated_text": (
                            "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes"
                            " Cannes 閲閲Cannes Cannes Cannes 攵 please,"
                        )
168
169
170
171
                    }
                ],
            ],
        )
172

173
    def get_test_pipeline(self, model, tokenizer, processor):
174
        text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer)
175
176
        return text_generator, ["This is a test", "Another test"]

177
178
179
180
181
182
183
184
185
186
187
188
    def test_stop_sequence_stopping_criteria(self):
        prompt = """Hello I believe in"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        output = text_generator(prompt)
        self.assertEqual(
            output,
            [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}],
        )

        output = text_generator(prompt, stop_sequence=" fe")
        self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}])

189
190
191
192
    def run_pipeline_test(self, text_generator, _):
        model = text_generator.model
        tokenizer = text_generator.tokenizer

193
        outputs = text_generator("This is a test")
194
195
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
196
197

        outputs = text_generator("This is a test", return_full_text=False)
198
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
199
200
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

201
        text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False)
202
        outputs = text_generator("This is a test")
203
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
204
205
206
        self.assertNotIn("This is a test", outputs[0]["generated_text"])

        outputs = text_generator("This is a test", return_full_text=True)
207
208
        self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        self.assertTrue(outputs[0]["generated_text"].startswith("This is a test"))
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
            ],
        )

        if text_generator.tokenizer.pad_token is not None:
            outputs = text_generator(
                ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True
            )
            self.assertEqual(
                outputs,
                [
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                    [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}],
                ],
            )

231
232
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_text=True)
Nicolas Patry's avatar
Nicolas Patry committed
233
234
235
236
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_full_text=True, return_tensors=True)
        with self.assertRaises(ValueError):
            outputs = text_generator("test", return_text=True, return_tensors=True)
237

238
239
240
241
        # Empty prompt is slighly special
        # it requires BOS token to exist.
        # Special case for Pegasus which will always append EOS so will
        # work even without BOS.
242
243
244
245
246
        if (
            text_generator.tokenizer.bos_token_id is not None
            or "Pegasus" in tokenizer.__class__.__name__
            or "Git" in model.__class__.__name__
        ):
247
248
249
250
251
            outputs = text_generator("")
            self.assertEqual(outputs, [{"generated_text": ANY(str)}])
        else:
            with self.assertRaises((ValueError, AssertionError)):
                outputs = text_generator("")
252
253
254
255
256
257
258
259

        if text_generator.framework == "tf":
            # TF generation does not support max_new_tokens, and it's impossible
            # to control long generation with only max_length without
            # fancy calculation, dismissing tests for now.
            return
        # We don't care about infinite range models.
        # They already work.
Suraj Patil's avatar
Suraj Patil committed
260
        # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
261
262
263
264
265
266
        EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [
            "RwkvForCausalLM",
            "XGLMForCausalLM",
            "GPTNeoXForCausalLM",
            "FuyuForCausalLM",
        ]
267
268
269
270
        if (
            tokenizer.model_max_length < 10000
            and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
        ):
271
272
273
274
275
276
277
278
279
280
281
282
            # Handling of large generations
            with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)):
                text_generator("This is a test" * 500, max_new_tokens=20)

            outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20)
            # Hole strategy cannot work
            with self.assertRaises(ValueError):
                text_generator(
                    "This is a test" * 500,
                    handle_long_generation="hole",
                    max_new_tokens=tokenizer.model_max_length + 10,
                )
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    @require_torch
    @require_accelerate
    @require_torch_gpu
    def test_small_model_pt_bloom_accelerate(self):
        import torch

        # Classic `model_kwargs`
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16},
        )
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

        # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16)
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16)
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )

325
        # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
326
        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto")
327
        self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32)
328
329
330
331
332
333
334
335
336
337
338
339
        out = pipe("This is a test")
        self.assertEqual(
            out,
            [
                {
                    "generated_text": (
                        "This is a test test test test test test test test test test test test test test test test"
                        " test"
                    )
                }
            ],
        )
340
341

    @require_torch
342
    @require_torch_accelerator
343
344
345
    def test_small_model_fp16(self):
        import torch

346
347
348
349
350
        pipe = pipeline(
            model="hf-internal-testing/tiny-random-bloom",
            device=torch_device,
            torch_dtype=torch.float16,
        )
351
        pipe("This is a test")
352
353
354

    @require_torch
    @require_accelerate
355
    @require_torch_accelerator
356
357
358
359
360
    def test_pipeline_accelerate_top_p(self):
        import torch

        pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16)
        pipe("This is a test", do_sample=True, top_p=0.5)
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

    def test_pipeline_length_setting_warning(self):
        prompt = """Hello world"""
        text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2")
        if text_generator.model.framework == "tf":
            logger = logging.get_logger("transformers.generation.tf_utils")
        else:
            logger = logging.get_logger("transformers.generation.utils")
        logger_msg = "Both `max_new_tokens`"  # The beggining of the message to be checked in this test

        # Both are set by the user -> log warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10, max_new_tokens=1)
        self.assertIn(logger_msg, cl.out)

        # The user only sets one -> no warning
        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_new_tokens=1)
        self.assertNotIn(logger_msg, cl.out)

        with CaptureLogger(logger) as cl:
            _ = text_generator(prompt, max_length=10)
        self.assertNotIn(logger_msg, cl.out)