test_tokenization_fast.py 40.4 KB
Newer Older
1
import logging
2
import unittest
Funtowicz Morgan's avatar
Funtowicz Morgan committed
3
4
from collections import namedtuple
from itertools import takewhile
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

from tests.utils import require_torch
from transformers import (
    BertTokenizer,
    BertTokenizerFast,
    DistilBertTokenizer,
    GPT2Tokenizer,
    GPT2TokenizerFast,
    OpenAIGPTTokenizer,
    PreTrainedTokenizer,
    RobertaTokenizer,
    TransfoXLTokenizer,
    is_torch_available,
)
from transformers.tokenization_distilbert import DistilBertTokenizerFast
from transformers.tokenization_openai import OpenAIGPTTokenizerFast
from transformers.tokenization_roberta import RobertaTokenizerFast
from transformers.tokenization_transfo_xl import TransfoXLTokenizerFast


25
26
27
28
logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
29
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]
30
Tokenizer = namedtuple("Tokenizer", ["name", "rust_cls", "python_cls", "vocab_key", "filter", "kwargs"])
Funtowicz Morgan's avatar
Funtowicz Morgan committed
31

32

Funtowicz Morgan's avatar
Funtowicz Morgan committed
33
34
35
def filter_non_english(_: Tokenizer, pretrained_name: str):
    """ Filter all the model for non-english language """
    return not any([lang in pretrained_name for lang in NON_ENGLISH_TAGS])
36
37


Funtowicz Morgan's avatar
Funtowicz Morgan committed
38
39
def filter_roberta_detectors(_: Tokenizer, pretrained_name: str):
    return "detector" not in pretrained_name
40
41


Funtowicz Morgan's avatar
Funtowicz Morgan committed
42
class CommonFastTokenizerTest(unittest.TestCase):
43

Funtowicz Morgan's avatar
Funtowicz Morgan committed
44
45
46
47
48
    TOKENIZERS_CLASSES = frozenset([])

    def setUp(self) -> None:
        with open("tests/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
49

Funtowicz Morgan's avatar
Funtowicz Morgan committed
50
51
52
53
54
55
56
57
58
59
60
61
62
    def test_all_tokenizers(self):
        for tok_case in self.TOKENIZERS_CLASSES:
            for pretrained_name in tok_case.python_cls.pretrained_vocab_files_map[tok_case.vocab_key].keys():

                # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
                # information available in Tokenizer (name, rust class, python class, vocab key name)
                if tok_case.filter is None or (
                    tok_case.filter is not None and tok_case.filter(tok_case, pretrained_name)
                ):
                    with self.subTest("{} ({})".format(tok_case.name, pretrained_name)):
                        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name)
                        tokenizer_p = tok_case.python_cls.from_pretrained(pretrained_name)

63
                        self.fast_align_python(tokenizer_r, tokenizer_p, tok_case, pretrained_name)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
64
65
                        self.fast_only(tokenizer_r)

66
    def fast_align_python(self, tokenizer_r, tokenizer_p, tok_case, pretrained_name):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
67
68
69
70
71
72
73
74
75
76
77
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)
78
        self.assert_pretokenized_inputs(tokenizer_r, tokenizer_p)
79
        self.assert_create_token_type_ids(tokenizer_r, tokenizer_p)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
80
81
82
83
84
85
86
87
88
89
90
91
92
        # TODO: enable for v3.0.0
        # self.assert_empty_output_no_special_tokens(tokenizer_r, tokenizer_p)

    def fast_only(self, tokenizer_r):
        # Ensure None raise an error
        self.assertRaises(ValueError, tokenizer_r.tokenize, None)
        self.assertRaises(ValueError, tokenizer_r.encode, None)
        self.assertRaises(ValueError, tokenizer_r.encode_plus, None)
        self.assertRaises(ValueError, tokenizer_r.batch_encode_plus, None)

        self.assert_add_tokens(tokenizer_r)
        self.assert_offsets_mapping(tokenizer_r)
        self.assert_add_special_tokens(tokenizer_r)
93
        self.assert_alignement_methods(tokenizer_r)
94
        self.assert_batch_encode_dynamic_overflowing(tokenizer_r)
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

    def assert_alignement_methods(self, tokenizer_r):
        words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
        text = " ".join(words)
        batch_size = 3

        encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

        batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
        num_tokens = len(encoding["input_ids"])

        last_word_index = len(words) - 1
        last_token_index = num_tokens - 1
        last_batch_index = batch_size - 1
        last_char_index = len(text) - 1

        # words, tokens
        self.assertEqual(len(encoding.words(0)), num_tokens)
        self.assertEqual(max(encoding.words(0)), last_word_index)
        self.assertEqual(min(encoding.words(0)), 0)
        self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
        self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
        self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
        self.assertEqual(len(encoding.tokens(0)), num_tokens)

        # Assert token_to_word
        self.assertEqual(encoding.token_to_word(0), 0)
        self.assertEqual(encoding.token_to_word(0, 0), 0)
        self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
        self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
        self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

        # Assert word_to_tokens
        self.assertEqual(encoding.word_to_tokens(0).start, 0)
        self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
        self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
        self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
        self.assertEqual(batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1)

        # Assert token_to_chars
        self.assertEqual(encoding.token_to_chars(0).start, 0)
        self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
        self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1)

        # Assert char_to_token
        self.assertEqual(encoding.char_to_token(0), 0)
        self.assertEqual(encoding.char_to_token(0, 0), 0)
        self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
        self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
        self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

        # Assert char_to_word
        self.assertEqual(encoding.char_to_word(0), 0)
        self.assertEqual(encoding.char_to_word(0, 0), 0)
        self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
        self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
        self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
        self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

        # Assert word_to_chars
        self.assertEqual(encoding.word_to_chars(0).start, 0)
        self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
        self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
        self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
        self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
        self.assertEqual(batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
173

174
    def assert_tokenization_python_rust_equals(self, tokenizer_r, tokenizer_p):
175
176
177
178
179
        # Ensure basic input match
        input_p = tokenizer_p.encode_plus(self._data)
        input_r = tokenizer_r.encode_plus(self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
180
            self.assertSequenceEqual(input_p[key], input_r[key])
181
182
183
184
185

        input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
        input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
186
            self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])
187
188

        # Ensure truncation match
189
190
        input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
        input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)
191
192

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
193
            self.assertSequenceEqual(input_p[key], input_r[key])
194
195

        # Ensure truncation with stride match
196
197
198
199
200
201
        input_p = tokenizer_p.encode_plus(
            self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
        )
        input_r = tokenizer_r.encode_plus(
            self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
        )
202
203

        for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
204
            self.assertSequenceEqual(input_p[key], input_r[key][0])
Funtowicz Morgan's avatar
Funtowicz Morgan committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    def assert_num_special_tokens_to_add_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True))

    def assert_max_length_equal(self, tokenizer_r, tokenizer_p):
        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
        self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def assert_special_tokens_map_equal(self, tokenizer_r, tokenizer_p):
        # Assert the set of special tokens match.
        self.assertSequenceEqual(
            tokenizer_p.special_tokens_map.items(), tokenizer_r.special_tokens_map.items(),
220
221
        )

222
223
224
225
226
227
228
229
    def assert_add_tokens(self, tokenizer_r):
        vocab_size = tokenizer_r.vocab_size
        self.assertEqual(tokenizer_r.add_tokens(""), 0)
        self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
        self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
        self.assertEqual(len(tokenizer_r), vocab_size + 3)

        self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
230
        self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
231
232
233
234
235
236
237
        self.assertRaises(
            AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
        )
        self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
        self.assertEqual(
            tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
        )
238
        self.assertEqual(len(tokenizer_r), vocab_size + 8)
239

Funtowicz Morgan's avatar
Funtowicz Morgan committed
240
    def assert_offsets_mapping(self, tokenizer_r):
241
242
243
244
        text = "Wonderful no inspiration example with subtoken"
        pair = "Along with an awesome pair"

        # No pair
Funtowicz Morgan's avatar
Funtowicz Morgan committed
245
246
247
248
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
        )
        added_tokens = tokenizer_r.num_special_tokens_to_add(False)
249
250
251
252
253
254
255
256
257
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

        # Pairs
Funtowicz Morgan's avatar
Funtowicz Morgan committed
258
259
        tokens_with_offsets = tokenizer_r.encode_plus(
            text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
260
        )
Funtowicz Morgan's avatar
Funtowicz Morgan committed
261
        added_tokens = tokenizer_r.num_special_tokens_to_add(True)
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        offsets = tokens_with_offsets["offset_mapping"]

        # Assert there is the same number of tokens and offsets
        self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

        # Assert there is online added_tokens special_tokens
        self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def assert_batch_encode_dynamic_overflowing(self, tokenizer: PreTrainedTokenizer):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        returned_tensor = "pt" if is_torch_available() else "tf"

283
284
285
        if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
            return

286
287
288
        tokens = tokenizer.encode_plus(
            "HuggingFace is solving NLP one commit at a time",
            max_length=6,
289
290
            padding=True,
            truncation=True,
291
292
293
294
295
296
297
298
299
300
301
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)

        # Mono sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time"],
            max_length=6,
302
303
            padding=True,
            truncation="only_first",
304
305
306
307
308
309
310
311
312
313
314
315
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

        # Multi sample
        tokens = tokenizer.batch_encode_plus(
            ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
            max_length=6,
316
317
            padding=True,
            truncation="only_first",
318
319
320
321
322
323
324
325
            return_tensors=returned_tensor,
            return_overflowing_tokens=True,
        )

        for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
            self.assertEqual(len(tokens[key].shape), 2)
            self.assertEqual(tokens[key].shape[-1], 6)

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def assert_pretokenized_inputs(self, tokenizer_r, tokenizer_p):
        # Input string
        pretokenized_input_simple = "This is a sample input".split()
        pretokenized_input_pair = "This is a sample pair".split()

        # Test encode for pretokenized inputs
        output_r = tokenizer_r.encode(pretokenized_input_simple, is_pretokenized=True)
        output_p = tokenizer_p.encode(pretokenized_input_simple, is_pretokenized=True)
        self.assertEqual(output_p, output_r)

        kwargs = {
            "is_pretokenized": True,
            "return_token_type_ids": True,
            "return_attention_mask": True,
            "return_overflowing_tokens": False,
            "return_special_tokens_mask": True,
            "return_offsets_mapping": False,  # Not implemented in python tokenizers
        }
        # Test encode_plus for pretokenized inputs
        output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
        output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

        # Test batch_encode_plus for pretokenized inputs
        input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
        output_r = tokenizer_r.batch_encode_plus(input_batch, **kwargs)
        output_p = tokenizer_p.batch_encode_plus(input_batch, **kwargs)
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

        # Test encode for pretokenized inputs pairs
        output_r = tokenizer_r.encode(pretokenized_input_simple, pretokenized_input_pair, is_pretokenized=True)
        output_p = tokenizer_p.encode(pretokenized_input_simple, pretokenized_input_pair, is_pretokenized=True)
        self.assertEqual(output_p, output_r)

        # Test encode_plus for pretokenized inputs
        output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
        output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

        # Test batch_encode_plus for pretokenized inputs
        input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
            pretokenized_input_simple + pretokenized_input_pair,
            pretokenized_input_pair,
        ]
        output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **kwargs)
        output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **kwargs)
        for key in output_p.keys():
            self.assertEqual(output_p[key], output_r[key])

378
379
380
381
382
383
384
385
386
387
388
389
390
391
    def assert_create_token_type_ids(self, tokenizer_r, tokenizer_p):
        input_simple = [1, 2, 3]
        input_pair = [1, 2, 3]

        # Generate output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
        output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    def assert_build_inputs_with_special_tokens(self, tokenizer_r, tokenizer_p):
        # Input string
        input_simple = tokenizer_p.tokenize("This is a sample input")
        input_pair = tokenizer_p.tokenize("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

        # Input tokens id
        input_simple = tokenizer_p.encode("This is a sample input")
        input_pair = tokenizer_p.encode("This is a sample pair")

        # Generate output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
        self.assertEqual(output_p, output_r)

        # Generate pair output
        output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
        output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
        self.assertEqual(output_p, output_r)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
421
422
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        def assert_padded_input_match(input_r: list, input_p: list, max_length: int):
423

Funtowicz Morgan's avatar
Funtowicz Morgan committed
424
            # Ensure we match max_length
425
426
            self.assertEqual(len(input_r), max_length)
            self.assertEqual(len(input_p), max_length)
427

Funtowicz Morgan's avatar
Funtowicz Morgan committed
428
429
430
431
            # Ensure the number of padded tokens is the same
            padded_tokens_r = list(takewhile(lambda i: i == tokenizer_r.pad_token_id, reversed(input_r)))
            padded_tokens_p = list(takewhile(lambda i: i == tokenizer_p.pad_token_id, reversed(input_p)))
            self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)
432

433
        def assert_batch_padded_input_match(input_r: dict, input_p: dict, max_length: int):
Funtowicz Morgan's avatar
Funtowicz Morgan committed
434
            for i_r in input_r.values():
435
436
437
438
439
440
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                    len(i_r[1]), max_length
                )
                self.assertEqual(len(i_r), 2), self.assertEqual(len(i_r[0]), max_length), self.assertEqual(
                    len(i_r[1]), max_length
                )
441

Funtowicz Morgan's avatar
Funtowicz Morgan committed
442
443
            for i_r, i_p in zip(input_r["input_ids"], input_p["input_ids"]):
                assert_padded_input_match(i_r, i_p, max_length)
444

Funtowicz Morgan's avatar
Funtowicz Morgan committed
445
446
            for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
                self.assertSequenceEqual(i_r, i_p)
447

448
        # Encode - Simple input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
449
450
451
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r, input_p, max_length)
452
453
454
        input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
        input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
        assert_padded_input_match(input_r, input_p, max_length)
455

456
457
458
459
460
        input_r = tokenizer_r.encode("This is a simple input", padding="longest")
        input_p = tokenizer_p.encode("This is a simple input", padding=True)
        assert_padded_input_match(input_r, input_p, len(input_r))

        # Encode - Pair input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
461
462
463
464
465
466
467
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r, input_p, max_length)
468
469
470
471
472
473
474
475
476
477
        input_r = tokenizer_r.encode(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        input_p = tokenizer_p.encode(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        assert_padded_input_match(input_r, input_p, max_length)
        input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
        input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
        assert_padded_input_match(input_r, input_p, len(input_r))
478

479
        # Encode_plus - Simple input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
480
481
482
483
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, pad_to_max_length=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
484
485
486
487
        input_r = tokenizer_r.encode_plus("This is a simple input", max_length=max_length, padding="max_length")
        input_p = tokenizer_p.encode_plus("This is a simple input", max_length=max_length, padding="max_length")
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
488

489
490
491
492
493
494
495
        input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
        input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))

        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

        # Encode_plus - Pair input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
496
497
498
499
500
501
502
503
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
504
505
506
507
508
509
510
511
512
513
514
515
        input_r = tokenizer_r.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        input_p = tokenizer_p.encode_plus(
            "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
        )
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
        input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
        input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))
        self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
516

517
        # Batch_encode_plus - Simple input
Funtowicz Morgan's avatar
Funtowicz Morgan committed
518
519
520
521
522
523
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, pad_to_max_length=True
        )
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        assert_batch_padded_input_match(input_r, input_p, max_length)

        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length",
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="max_length",
        )
        assert_batch_padded_input_match(input_r, input_p, max_length)

        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding="longest",
        )
        input_p = tokenizer_p.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], max_length=max_length, padding=True,
        )
        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        input_r = tokenizer_r.batch_encode_plus(
            ["This is a simple input 1", "This is a simple input 2"], padding="longest"
        )
        input_p = tokenizer_p.batch_encode_plus(["This is a simple input 1", "This is a simple input 2"], padding=True)
        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        # Batch_encode_plus - Pair input
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=max_length,
            truncation=True,
            padding="max_length",
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
            max_length=max_length,
            truncation=True,
            padding="max_length",
        )
        assert_batch_padded_input_match(input_r, input_p, max_length)
568

Funtowicz Morgan's avatar
Funtowicz Morgan committed
569
570
571
572
573
        input_r = tokenizer_r.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
574
            padding=True,
Funtowicz Morgan's avatar
Funtowicz Morgan committed
575
576
577
578
579
580
        )
        input_p = tokenizer_p.batch_encode_plus(
            [
                ("This is a simple input 1", "This is a simple input 2"),
                ("This is a simple pair 1", "This is a simple pair 2"),
            ],
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
            padding="longest",
        )
        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        # Using pad on single examples after tokenization
        input_r = tokenizer_r.encode_plus("This is a input 1")
        input_r = tokenizer_r.pad(input_r)

        input_p = tokenizer_r.encode_plus("This is a input 1")
        input_p = tokenizer_r.pad(input_p)

        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]))

        # Using pad on single examples after tokenization
        input_r = tokenizer_r.encode_plus("This is a input 1")
        input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

        input_p = tokenizer_r.encode_plus("This is a input 1")
        input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

        assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length)

        # Using pad after tokenization
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
Funtowicz Morgan's avatar
Funtowicz Morgan committed
606
        )
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        input_r = tokenizer_r.pad(input_r)

        input_p = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
        )
        input_p = tokenizer_r.pad(input_p)

        assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]))

        # Using pad after tokenization
        input_r = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
        )
        input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

        input_p = tokenizer_r.batch_encode_plus(
            ["This is a input 1", "This is a much longer input whilch should be padded"]
        )
        input_p = tokenizer_r.pad(input_p, max_length=max_length, padding="max_length")

        assert_batch_padded_input_match(input_r, input_p, max_length)
628

Funtowicz Morgan's avatar
Funtowicz Morgan committed
629
630
631
    def assert_save_pretrained(self, tokenizer_r, tokenizer_p):
        # Checks it save with the same files
        self.assertSequenceEqual(tokenizer_r.save_vocabulary("."), tokenizer_p.save_vocabulary("."))
632

Funtowicz Morgan's avatar
Funtowicz Morgan committed
633
634
        # Checks everything loads correctly in the same way
        tokenizer_rp, tokenizer_pp = tokenizer_r.from_pretrained("."), tokenizer_p.from_pretrained(".")
635

Funtowicz Morgan's avatar
Funtowicz Morgan committed
636
637
638
639
640
        # Check special tokens are set accordingly on Rust and Python
        for key in tokenizer_pp.special_tokens_map:
            self.assertTrue(hasattr(tokenizer_rp, key))
            # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
            # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
641

Funtowicz Morgan's avatar
Funtowicz Morgan committed
642
643
644
645
646
647
648
649
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
        tokens_p = tokenizer_p.encode_plus(
            sentence, add_special_tokens=True, return_attention_mask=False, return_token_type_ids=True
        )
650

Funtowicz Morgan's avatar
Funtowicz Morgan committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        for key in tokens_p.keys():
            self.assertEqual(tokens_r[key], tokens_p[key])

        self.assertEqual(sum(tokens_r["token_type_ids"]), 0)
        self.assertEqual(sum(tokens_p["token_type_ids"]), 0)

        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
        self.assertSequenceEqual(tokens_r, tokens_p)

    def assert_add_special_tokens(self, tokenizer_r):
        simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
        # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

        for text in ["", " "]:
            # tokenize()
            no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode()
            no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
            self.assertEqual(len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add)

            # encode_plus()
            no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
            with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
            for key in no_special_tokens.keys():
                self.assertEqual(
                    len(no_special_tokens[key]), len(with_special_tokens[key]) - simple_num_special_tokens_to_add
                )

            # # batch_encode_plus
            no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
            with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
            for key in no_special_tokens.keys():
                for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                    self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)


class WordPieceFastTokenizerTest(CommonFastTokenizerTest):
    """
    Override all the specific methods to test WordPiece behavior
    """

    TOKENIZERS_CLASSES = frozenset(
        [
699
700
701
702
            Tokenizer("Bert", BertTokenizerFast, BertTokenizer, "vocab_file", filter_non_english, None),
            Tokenizer(
                "DistilBert", DistilBertTokenizerFast, DistilBertTokenizer, "vocab_file", filter_non_english, None
            ),
Funtowicz Morgan's avatar
Funtowicz Morgan committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        ]
    )

    def fast_only(self, tokenizer_r):
        super().fast_only(tokenizer_r)
        self.assert_offsets_with_special_characters(tokenizer_r)

    def assert_add_special_tokens(self, tokenizer_r):
        super().assert_add_special_tokens(tokenizer_r)

    def assert_offsets_with_special_characters(self, tokenizer_r):
        sentence = "A, na茂ve [MASK] AllenNLP sentence."
        tokens = tokenizer_r.encode_plus(
            sentence,
            return_attention_mask=False,
            return_token_type_ids=False,
            return_offsets_mapping=True,
            add_special_tokens=True,
        )
722

Funtowicz Morgan's avatar
Funtowicz Morgan committed
723
724
725
726
727
728
729
730
731
732
733
        expected_results = [
            ((0, 1), "A"),
            ((1, 2), ","),
            ((3, 8), "naive"),  # BERT normalizes this away
            # Append MASK here after lower-casing
            ((16, 21), "Allen"),
            ((22, 24), "##NL"),
            ((24, 25), "##P"),
            ((26, 34), "sentence"),
            ((35, 36), "."),
        ]
734

Funtowicz Morgan's avatar
Funtowicz Morgan committed
735
736
737
        # Check if the tokenizer is uncased
        if tokenizer_r.init_kwargs.get("do_lower_case"):
            expected_results = [(offset, token.lower()) for (offset, token) in expected_results]
738

Funtowicz Morgan's avatar
Funtowicz Morgan committed
739
740
741
742
        # Append the special tokens
        expected_results.insert(3, ((9, 15), "[MASK]"))
        expected_results.insert(0, (None, "[CLS]"))
        expected_results.append((None, "[SEP]"))
743

Funtowicz Morgan's avatar
Funtowicz Morgan committed
744
745
        self.assertEqual([e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
        # self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"])
746
747


Funtowicz Morgan's avatar
Funtowicz Morgan committed
748
749
class RobertaFastTokenizerTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = frozenset(
750
        [Tokenizer("Roberta", RobertaTokenizerFast, RobertaTokenizer, "vocab_file", filter_roberta_detectors, None)]
Funtowicz Morgan's avatar
Funtowicz Morgan committed
751
    )
752

Funtowicz Morgan's avatar
Funtowicz Morgan committed
753
754
755
756
    def assert_embeded_special_tokens(self, tokenizer_r, tokenizer_p):
        sentence = "A, <mask> AllenNLP sentence."
        tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
        tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
757

Funtowicz Morgan's avatar
Funtowicz Morgan committed
758
759
760
        # Rust correctly handles the space before the mask while python doesnt
        self.assertSequenceEqual(tokens_r["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
        self.assertSequenceEqual(tokens_p["input_ids"], [0, 83, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
761

Funtowicz Morgan's avatar
Funtowicz Morgan committed
762
763
        # token_type_ids should put 0 everywhere
        self.assertEquals(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
764

Funtowicz Morgan's avatar
Funtowicz Morgan committed
765
766
767
768
769
        # attention_mask should put 1 everywhere, so sum over length should be 1
        self.assertEquals(
            sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
            sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
        )
770

Funtowicz Morgan's avatar
Funtowicz Morgan committed
771
772
773
        # Rust should have '臓' before <mask> which should be left as an entire token
        tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
        self.assertSequenceEqual(tokens_r, ["<s>", "臓A", ",", "<mask>", "臓Allen", "N", "LP", "臓sentence", ".", "</s>"])
774

775

Funtowicz Morgan's avatar
Funtowicz Morgan committed
776
777
class NoPaddingTokenFastTokenizerMatchingTest(CommonFastTokenizerTest):
    TOKENIZERS_CLASSES = [
778
779
        Tokenizer("OpenAI GPT", OpenAIGPTTokenizerFast, OpenAIGPTTokenizer, "vocab_file", None, None),
        Tokenizer("GPT2", GPT2TokenizerFast, GPT2Tokenizer, "vocab_file", None, [("add_prefix_space", True)]),
Funtowicz Morgan's avatar
Funtowicz Morgan committed
780
    ]
781

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    def fast_align_python(self, tokenizer_r, tokenizer_p, tok_case, pretrained_name):
        # Check is_fast is set correctly
        self.assertFalse(tokenizer_p.is_fast)
        self.assertTrue(tokenizer_r.is_fast)

        # Check that Rust and Python align
        self.assert_tokenization_python_rust_equals(tokenizer_r, tokenizer_p)
        self.assert_num_special_tokens_to_add_equal(tokenizer_r, tokenizer_p)
        self.assert_max_length_equal(tokenizer_r, tokenizer_p)
        self.assert_special_tokens_map_equal(tokenizer_r, tokenizer_p)
        self.assert_embeded_special_tokens(tokenizer_r, tokenizer_p)
        self.assert_padding(tokenizer_r, tokenizer_p)

        # Specific for
        kwargs = {}
        if tok_case.kwargs is not None:
            kwargs = dict(tok_case.kwargs)
        tokenizer_r = tok_case.rust_cls.from_pretrained(pretrained_name, **kwargs)
        self.assert_pretokenized_inputs(tokenizer_r, tokenizer_p)

Funtowicz Morgan's avatar
Funtowicz Morgan committed
802
803
804
805
806
807
808
809
810
    def assert_padding(self, tokenizer_r, tokenizer_p, max_length=15):
        # Simple input
        s = "This is a simple input"
        s2 = ["This is a simple input 1", "This is a simple input 2"]
        p = ("This is a simple input", "This is a pair")
        p2 = [
            ("This is a simple input 1", "This is a simple input 2"),
            ("This is a simple pair 1", "This is a simple pair 2"),
        ]
811

Funtowicz Morgan's avatar
Funtowicz Morgan committed
812
        # Simple input tests
813
        self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")
814

Funtowicz Morgan's avatar
Funtowicz Morgan committed
815
        # Simple input
816
        self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")
817

Funtowicz Morgan's avatar
Funtowicz Morgan committed
818
        # Simple input
819
820
821
        self.assertRaises(
            ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length",
        )
822

Funtowicz Morgan's avatar
Funtowicz Morgan committed
823
        # Pair input
824
        self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")
825

Funtowicz Morgan's avatar
Funtowicz Morgan committed
826
        # Pair input
827
        self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")
828

Funtowicz Morgan's avatar
Funtowicz Morgan committed
829
        # Pair input
830
831
832
        self.assertRaises(
            ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length",
        )
833

834

Funtowicz Morgan's avatar
Funtowicz Morgan committed
835
836
class TransfoXLFastTokenizerTest(NoPaddingTokenFastTokenizerMatchingTest):
    TOKENIZERS_CLASSES = frozenset(
837
        [Tokenizer("TransfoXL", TransfoXLTokenizerFast, TransfoXLTokenizer, "pretrained_vocab_file", None, None)]
Funtowicz Morgan's avatar
Funtowicz Morgan committed
838
    )
839

Funtowicz Morgan's avatar
Funtowicz Morgan committed
840
841
842
    @require_torch
    def test_all_tokenizers(self):
        super().test_all_tokenizers()