# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 OpenAI GPT-2 model. """ from __future__ import absolute_import, division, print_function, unicode_literals import collections import json import logging import math import os import sys from io import open import numpy as np import tensorflow as tf from .modeling_tf_utils import TFPreTrainedModel, TFConv1D from .configuration_gpt2 import GPT2Config from .file_utils import add_start_docstrings logger = logging.getLogger(__name__) GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-tf_model.h5", "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-tf_model.h5", "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-tf_model.h5"} def load_gpt2_pt_weights_in_tf(tf_model, config, pytorch_checkpoint_path): """ Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format We use HDF5 to easily do transfer learning (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). """ try: import re import torch import numpy from tensorflow.python.keras import backend as K except ImportError: logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see " "https://pytorch.org/ for installation instructions.") raise pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info("Loading PyTorch weights from {}".format(pt_path)) # Load pytorch model state_dict = torch.load(pt_path, map_location='cpu') inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] tf_inputs = tf.constant(inputs_list) tfo = tf_model(tf_inputs, training=False) # build the network symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights weight_value_tuples = [] for symbolic_weight in symbolic_weights: name = symbolic_weight.name name = name.replace('cls_mlm', 'cls') # We had to split this layer in two in the TF model to be name = name.replace('cls_nsp', 'cls') # able to do transfer learning (Keras only allow to remove full layers) name = name.replace(':0', '') name = name.replace('layer_', 'layer/') name = name.split('/') name = name[1:] transpose = bool(name[-1] == 'kernel') if name[-1] == 'kernel' or name[-1] == 'embeddings': name[-1] = 'weight' name = '.'.join(name) assert name in state_dict array = state_dict[name].numpy() if transpose: array = numpy.transpose(array) try: assert list(symbolic_weight.shape) == list(array.shape) except AssertionError as e: e.args += (symbolic_weight.shape, array.shape) raise e logger.info("Initialize TF weight {}".format(symbolic_weight.name)) weight_value_tuples.append((symbolic_weight, array)) K.batch_set_value(weight_value_tuples) tfo = tf_model(tf_inputs, training=False) # Make sure restore ops are run return tf_model def gelu(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.tanh( (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf class TFAttention(tf.keras.layers.Layer): def __init__(self, nx, n_ctx, config, scale=False, **kwargs): super(TFAttention, self).__init__(**kwargs) self.output_attentions = config.output_attentions n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implem] assert n_state % config.n_head == 0 self.n_ctx = n_ctx self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = TFConv1D(n_state * 3, nx, name='c_attn') self.c_proj = TFConv1D(n_state, nx, name='c_proj') self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop) self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): pass @staticmethod @tf.function def attention_mask(nd, ns, dtype): """1's in the lower triangle, counting from the lower right corner. Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs. """ i = tf.range(nd)[:,None] j = tf.range(ns) m = i >= j - ns + nd return tf.cast(m, dtype) @tf.function def _attn(self, inputs, training=False): q, k, v, head_mask = inputs # q, k, v have shape [batch, heads, sequence, features] w = tf.matmul(q, k, transpose_b=True) if self.scale: n_state = shape_list(v)[-1] w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype)) # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst. _, _, nd, ns = shape_list(w) b = self.attention_mask(nd, ns, dtype=w.dtype) b = tf.reshape(b, [1, 1, nd, ns]) w = w * b - 1e4 * (1 - b) w = tf.nn.softmax(w) if training: w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [tf.matmul(w, v)] if self.output_attentions: outputs.append(w) return outputs @tf.function def merge_heads(self, x): x = tf.transpose(x, [0, 2, 1, 3]) x_shape = tf.shape(x) new_x_shape = x_shape[:-2] + (x_shape[-2] * x_shape[-1],) return tf.reshape(x, new_x_shape) @tf.function def split_heads(self, x): x_shape = tf.shape(x) new_x_shape = x_shape[:-1] + (self.n_head, x_shape[-1] // self.n_head) x = tf.reshape(x, new_x_shape) return tf.transpose(x, (0, 2, 1, 3)) # (batch, head, seq_length, head_features) @tf.function def call(self, inputs, training=False): x, layer_past, head_mask = inputs x = self.c_attn(x) query, key, value = tf.split(x, 3, axis=2) query = self.split_heads(query) key = self.split_heads(key) value = self.split_heads(value) if layer_past is not None: past_key, past_value = tf.unstack(layer_past, axis=1) key = tf.concat([past_key, key], axis=-2) value = tf.concat([past_value, value], axis=-2) present = tf.stack([key, value], axis=1) attn_outputs = self._attn(query, key, value, head_mask, training=training) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) if training: a = self.resid_dropout(a) outputs = [a, present] + attn_outputs[1:] return outputs # a, present, (attentions) class TFMLP(nn.Module): def __init__(self, n_state, config, **kwargs): super(TFMLP, self).__init__(**kwargs) nx = config.n_embd self.c_fc = TFConv1D(n_state, nx, name='c_fc') self.c_proj = TFConv1D(nx, n_state, name='c_proj') self.act = gelu self.dropout = tf.keras.layers.Dropout(config.resid_pdrop) @tf.function def call(self, x, training=False): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) if training: h2 = self.dropout(h2) return h2 class TFBlock(tf.keras.layers.Layer): def __init__(self, n_ctx, config, scale=False, **kwargs): super(TFBlock, self).__init__(**kwargs) nx = config.n_embd self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_1') self.attn = TFAttention(nx, n_ctx, config, scale, name='attn') self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_2') self.mlp = TFMLP(4 * nx, config, name='mlp') @tf.function def call(self, x, layer_past=None, head_mask=None, training=False): output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask, training=training) a = output_attn[0] # output_attn: a, present, (attentions) x = x + a m = self.mlp(self.ln_2(x), training=training) x = x + m outputs = [x] + output_attn[1:] return outputs # x, present, (attentions) class TFGPT2Embeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config, **kwargs): super(TFGPT2Embeddings, self).__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size def build(self, input_shape): """Build shared word embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ self.weight = self.add_weight( "weight", shape=[self.vocab_size, self.n_embed], initializer=tf.random_normal_initializer( mean=0., stddev=self.n_embed**-0.5)) super(TFBertEmbeddings, self).build(input_shape) @tf.function def call(self, inputs, mode="embedding", training=False): """Get token embeddings of inputs. Args: inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids) mode: string, a valid value is one of "embedding" and "linear". Returns: outputs: (1) If mode == "embedding", output embedding tensor, float32 with shape [batch_size, length, embedding_size]; (2) mode == "linear", output linear tensor, float32 with shape [batch_size, length, vocab_size]. Raises: ValueError: if mode is not valid. Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ if mode == "embedding": return self._embedding(inputs, training=training) elif mode == "linear": return self._linear(inputs) else: raise ValueError("mode {} is not valid.".format(mode)) def _embedding(self, input_ids): """Applies embedding based on inputs tensor.""" return tf.gather(self.weight, input_ids) def _linear(self, inputs): """Computes logits by running inputs through a linear layer. Args: inputs: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ batch_size = tf.shape(inputs)[0] length = tf.shape(inputs)[1] x = tf.reshape(inputs, [-1, self.n_embed]) logits = tf.matmul(x, self.weight, transpose_b=True) return tf.reshape(logits, [batch_size, length, self.vocab_size]) class TFGPT2MainLayer(tf.keras.layers.Layer): def __init__(self, config, *inputs, **kwargs): super(TFGPT2MainLayer, self).__init__(config, *inputs, **kwargs) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.vocab_size = config.vocab_size self.n_embd = config.n_embd self.wte = TFGPT2Embeddings(config, name='wte') self.wpe = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='wpe') self.drop = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [TFBlock(config.n_ctx, config, scale=Truename='h_{}'.format(i)) for i in range(config.n_layer)] self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f') def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError @tf.function def call(self, inputs, training=False): input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None): if not isinstance(inputs, (dict, tuple, list)): input_ids = inputs attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None elif isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else None token_type_ids = inputs[2] if len(inputs) > 2 else None position_ids = inputs[3] if len(inputs) > 3 else None head_mask = inputs[4] if len(inputs) > 4 else None assert len(inputs) <= 5, "Too many inputs." else: input_ids = inputs.get('input_ids') attention_mask = inputs.get('attention_mask', None) token_type_ids = inputs.get('token_type_ids', None) position_ids = inputs.get('position_ids', None) head_mask = inputs.get('head_mask', None) assert len(inputs) <= 5, "Too many inputs." if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = past[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.n_layer input_shape = input_ids.size() input_ids = input_ids.view(-1, input_ids.size(-1)) position_ids = position_ids.view(-1, position_ids.size(-1)) inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.wte(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () all_attentions = [] all_hidden_states = () for i, (block, layer_past) in enumerate(zip(self.h, past)): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) outputs = block(hidden_states, layer_past, head_mask[i]) hidden_states, present = outputs[:2] presents = presents + (present,) if self.output_attentions: all_attentions.append(outputs[2]) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states, presents) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs # last hidden state, presents, (all hidden_states), (attentions) class TFGPT2PreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for dowloading and loading pretrained models. """ config_class = GPT2Config pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" GPT2_START_DOCSTRING = r""" OpenAI GPT-2 model was proposed in `Language Models are Unsupervised Multitask Learners`_ by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**. It's a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus of ~40 GB of text data. This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. .. _`Language Models are Unsupervised Multitask Learners`: https://openai.com/blog/better-language-models/ .. _`tf.keras.Model`: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model Important note on the model inputs: The inputs of the TF 2.0 models are slightly different from the PyTorch ones since TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor. More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`. There are three possibilities to gather and feed the inputs to the model: - a single Tensor with input_ids only and nothing else: `model(inputs_ids) - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associaed to the input names given in the docstring: `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})` Parameters: config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ GPT2_INPUTS_DOCSTRING = r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of input sequence tokens in the vocabulary. GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: A parallel sequence of tokens (can be used to indicate various portions of the inputs). The embeddings from these tokens will be summed with the respective token embeddings. Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). **past**: list of ``torch.FloatTensor`` (one for each layer): that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. """ @add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING) class TFGPT2Model(TFGPT2PreTrainedModel): r""" Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` Sequence of hidden-states at the last layer of the model. **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = TFGPT2Model.from_pretrained('gpt2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple """ def __init__(self, config, *inputs, **kwargs): super(TFGPT2Model, self).__init__(config, *inputs, **kwargs) self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.vocab_size = config.vocab_size self.n_embd = config.n_embd self.wpe = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='wpe') self.drop = tf.keras.layers.Dropout(config.embd_pdrop) self.h = [TFBlock(config.n_ctx, config, scale=Truename='h_{}'.format(i)) for i in range(config.n_layer)] self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f') self.init_weights() def build(self, input_shape): """Build shared word embedding layer Shared weights logic adapted from https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24 """ with tf.name_scope("wte"): # Create and initialize weights. The random normal initializer was chosen # arbitrarily, and works well. self.wte = self.add_weight( "weight", shape=[self.vocab_size, self.n_embed], initializer=tf.random_normal_initializer( mean=0., stddev=self.n_embed**-0.5)) super(TFGPT2Model, self).build(input_shape) def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ raise NotImplementedError @tf.function def call(self, inputs, training=False): input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None): if not isinstance(inputs, (dict, tuple, list)): input_ids = inputs attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None elif isinstance(inputs, (tuple, list)): input_ids = inputs[0] attention_mask = inputs[1] if len(inputs) > 1 else None token_type_ids = inputs[2] if len(inputs) > 2 else None position_ids = inputs[3] if len(inputs) > 3 else None head_mask = inputs[4] if len(inputs) > 4 else None assert len(inputs) <= 5, "Too many inputs." else: input_ids = inputs.get('input_ids') attention_mask = inputs.get('attention_mask', None) token_type_ids = inputs.get('token_type_ids', None) position_ids = inputs.get('position_ids', None) head_mask = inputs.get('head_mask', None) assert len(inputs) <= 5, "Too many inputs." if past is None: past_length = 0 past = [None] * len(self.h) else: past_length = past[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility else: head_mask = [None] * self.config.n_layer input_shape = input_ids.size() input_ids = input_ids.view(-1, input_ids.size(-1)) position_ids = position_ids.view(-1, position_ids.size(-1)) inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.wte(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () all_attentions = [] all_hidden_states = () for i, (block, layer_past) in enumerate(zip(self.h, past)): if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) outputs = block(hidden_states, layer_past, head_mask[i]) hidden_states, present = outputs[:2] presents = presents + (present,) if self.output_attentions: all_attentions.append(outputs[2]) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(*output_shape) # Add last hidden state if self.output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = (hidden_states, presents) if self.output_hidden_states: outputs = outputs + (all_hidden_states,) if self.output_attentions: # let the number of heads free (-1) so we can extract attention even after head pruning attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:] all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions) outputs = outputs + (all_attentions,) return outputs # last hidden state, presents, (all hidden_states), (attentions) @add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING) class GPT2LMHeadModel(GPT2PreTrainedModel): r""" **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-1`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Language modeling loss. **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import torch from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=input_ids) loss, logits = outputs[:2] """ def __init__(self, config): super(GPT2LMHeadModel, self).__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.init_weights() self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.transformer.wte) def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None): transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, past=past, head_mask=head_mask) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) outputs = (lm_logits,) + transformer_outputs[1:] if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions) @add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, GPT2_START_DOCSTRING) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): r""" Inputs: **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of input sequence tokens in the vocabulary. The second dimension of the input (`num_choices`) indicates the number of choices to score. Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`. See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``: Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) - 1[``. **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``: A parallel sequence of tokens (can be used to indicate various portions of the inputs). The embeddings from these tokens will be summed with the respective token embeddings. Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices). **past**: list of ``torch.FloatTensor`` (one for each layer): that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `past` output below). Can be used to speed up sequential decoding. **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` Indices are selected in ``[-1, 0, ..., config.vocab_size]`` All labels set to ``-1`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``: Labels for computing the multiple choice classification loss. Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see `input_ids` above) Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Language modeling loss. **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Multiple choice classification loss. **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)`` Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax). **past**: list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: that contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `past` input) to speed up sequential decoding. **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) of shape ``(batch_size, sequence_length, hidden_size)``: Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: (`optional`, returned when ``config.output_attentions=True``) list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: import torch from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2DoubleHeadsModel.from_pretrained('gpt2') # Add a [CLS] to the vocabulary (we should train it also!) tokenizer.add_special_tokens({'cls_token': '[CLS]'}) model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size print(tokenizer.cls_token_id, len(tokenizer)) # The newly token the last token of the vocabulary choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] encoded_choices = [tokenizer.encode(s) for s in choices] cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 outputs = model(input_ids, mc_token_ids=mc_token_ids) lm_prediction_scores, mc_prediction_scores = outputs[:2] """ def __init__(self, config): super(GPT2DoubleHeadsModel, self).__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) self.init_weights() self.tie_weights() def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.transformer.wte) def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None, position_ids=None, past=None, head_mask=None): transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids, past=past, head_mask=head_mask) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) outputs = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) outputs = (loss,) + outputs if lm_labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = lm_labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) outputs = (loss,) + outputs return outputs # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)