modeling_tf_gpt2.py 34.1 KB
Newer Older
thomwolf's avatar
WIP  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OpenAI GPT-2 model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import math
import os
import sys
from io import open

import numpy as np
import tensorflow as tf

thomwolf's avatar
thomwolf committed
31
from .modeling_tf_utils import TFPreTrainedModel, TFConv1D, TFSequenceSummary, shape_list
thomwolf's avatar
WIP  
thomwolf committed
32
33
34
35
36
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
37
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-tf_model.h5",
thomwolf's avatar
WIP  
thomwolf committed
38
39
40
41
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-tf_model.h5",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-tf_model.h5"}


42
def load_gpt2_pt_weights_in_tf2(tf_model, config, pytorch_checkpoint_path):
thomwolf's avatar
WIP  
thomwolf committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    """ Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format
        We use HDF5 to easily do transfer learning
        (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
    """
    try:
        import re
        import torch
        import numpy
        from tensorflow.python.keras import backend as K
    except ImportError:
        logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see "
            "https://pytorch.org/ for installation instructions.")
        raise

    pt_path = os.path.abspath(pytorch_checkpoint_path)
    logger.info("Loading PyTorch weights from {}".format(pt_path))
    # Load pytorch model
    state_dict = torch.load(pt_path, map_location='cpu')

    inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
    tf_inputs = tf.constant(inputs_list)
    tfo = tf_model(tf_inputs, training=False)  # build the network

    symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
    weight_value_tuples = []
    for symbolic_weight in symbolic_weights:
        name = symbolic_weight.name
        name = name.replace(':0', '')
71
        name = name.replace('h_', 'h/')
thomwolf's avatar
WIP  
thomwolf committed
72
        name = name.split('/')
73
        name = name[2:]
thomwolf's avatar
WIP  
thomwolf committed
74
75

        transpose = bool(name[-1] == 'kernel')
76
        if name[-1] == 'kernel' or name[-1] == 'embeddings' or name[-1] == 'gamma':
thomwolf's avatar
WIP  
thomwolf committed
77
            name[-1] = 'weight'
78
79
        if name[-1] == 'beta':
            name[-1] = 'bias'
thomwolf's avatar
WIP  
thomwolf committed
80
81

        name = '.'.join(name)
82
        assert name in state_dict, "Weight {} not in PyTorch model".format(name)
thomwolf's avatar
WIP  
thomwolf committed
83
84
85
86
87
        array = state_dict[name].numpy()

        if transpose:
            array = numpy.transpose(array)

88
89
90
91
92
        if len(symbolic_weight.shape) > len(array.shape):
            array = array[None, ...]
        if len(symbolic_weight.shape) < len(array.shape):
            array = np.squeeze(array)

thomwolf's avatar
WIP  
thomwolf committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        try:
            assert list(symbolic_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (symbolic_weight.shape, array.shape)
            raise e

        logger.info("Initialize TF weight {}".format(symbolic_weight.name))

        weight_value_tuples.append((symbolic_weight, array))

    K.batch_set_value(weight_value_tuples)

    tfo = tf_model(tf_inputs, training=False)  # Make sure restore ops are run
    return tf_model


def gelu(x):
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf


class TFAttention(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
124
125
    def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
        super(TFAttention, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
126
127
128
129
130
        self.output_attentions = config.output_attentions

        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
131
        self.n_ctx = n_ctx
thomwolf's avatar
WIP  
thomwolf committed
132
133
134
135
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

thomwolf's avatar
thomwolf committed
136
137
        self.c_attn = TFConv1D(n_state * 3, nx, name='c_attn')
        self.c_proj = TFConv1D(n_state, nx, name='c_proj')
thomwolf's avatar
thomwolf committed
138
139
        self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
        self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
140
141
142
        self.pruned_heads = set()

    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
143
144
145
        pass

    @staticmethod
146
    # @tf.function
thomwolf's avatar
thomwolf committed
147
    def causal_attention_mask(nd, ns, dtype):
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
        """1's in the lower triangle, counting from the lower right corner.
        Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
        """
        i = tf.range(nd)[:,None]
        j = tf.range(ns)
        m = i >= j - ns + nd
        return tf.cast(m, dtype)

156
    # @tf.function
thomwolf's avatar
thomwolf committed
157
    def _attn(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
158
        q, k, v, attention_mask, head_mask = inputs
thomwolf's avatar
thomwolf committed
159
160
        # q, k, v have shape [batch, heads, sequence, features]
        w = tf.matmul(q, k, transpose_b=True)
thomwolf's avatar
WIP  
thomwolf committed
161
        if self.scale:
thomwolf's avatar
thomwolf committed
162
163
            dk = tf.cast(tf.shape(k)[-1], tf.float32) # scale attention_scores
            w = w / tf.math.sqrt(dk)
thomwolf's avatar
thomwolf committed
164
165
166

        # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
        _, _, nd, ns = shape_list(w)
thomwolf's avatar
thomwolf committed
167
        b = self.causal_attention_mask(nd, ns, dtype=w.dtype)
thomwolf's avatar
thomwolf committed
168
        b = tf.reshape(b, [1, 1, nd, ns])
thomwolf's avatar
WIP  
thomwolf committed
169
170
        w = w * b - 1e4 * (1 - b)

thomwolf's avatar
thomwolf committed
171
172
173
174
175
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

        w = tf.nn.softmax(w, axis=-1)
thomwolf's avatar
thomwolf committed
176
177
        if training:
            w = self.attn_dropout(w)
thomwolf's avatar
WIP  
thomwolf committed
178
179
180
181
182

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
183
        outputs = [tf.matmul(w, v)]
thomwolf's avatar
WIP  
thomwolf committed
184
185
186
187
        if self.output_attentions:
            outputs.append(w)
        return outputs

188
    # @tf.function
thomwolf's avatar
WIP  
thomwolf committed
189
    def merge_heads(self, x):
thomwolf's avatar
thomwolf committed
190
        x = tf.transpose(x, [0, 2, 1, 3])
thomwolf's avatar
thomwolf committed
191
192
        x_shape = shape_list(x)
        new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
thomwolf's avatar
thomwolf committed
193
194
        return tf.reshape(x, new_x_shape)

195
    # @tf.function
thomwolf's avatar
thomwolf committed
196
    def split_heads(self, x):
thomwolf's avatar
thomwolf committed
197
198
        x_shape = shape_list(x)
        new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
thomwolf's avatar
thomwolf committed
199
200
201
        x = tf.reshape(x, new_x_shape)
        return tf.transpose(x, (0, 2, 1, 3))  # (batch, head, seq_length, head_features)

202
    # @tf.function
thomwolf's avatar
thomwolf committed
203
    def call(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
204
        x, layer_past, attention_mask, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
205
206

        x = self.c_attn(x)
thomwolf's avatar
thomwolf committed
207
        query, key, value = tf.split(x, 3, axis=2)
thomwolf's avatar
WIP  
thomwolf committed
208
        query = self.split_heads(query)
thomwolf's avatar
thomwolf committed
209
        key = self.split_heads(key)
thomwolf's avatar
WIP  
thomwolf committed
210
211
        value = self.split_heads(value)
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
212
213
214
215
            past_key, past_value = tf.unstack(layer_past, axis=1)
            key = tf.concat([past_key, key], axis=-2)
            value = tf.concat([past_value, value], axis=-2)
        present = tf.stack([key, value], axis=1)
thomwolf's avatar
WIP  
thomwolf committed
216

thomwolf's avatar
thomwolf committed
217
        attn_outputs = self._attn([query, key, value, attention_mask, head_mask], training=training)
thomwolf's avatar
WIP  
thomwolf committed
218
219
220
221
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
thomwolf's avatar
thomwolf committed
222
223
        if training:
            a = self.resid_dropout(a)
thomwolf's avatar
WIP  
thomwolf committed
224
225
226
227
228

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)


thomwolf's avatar
thomwolf committed
229
class TFMLP(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
230
231
    def __init__(self, n_state, config, **kwargs):
        super(TFMLP, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
232
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
233
234
        self.c_fc = TFConv1D(n_state, nx, name='c_fc')
        self.c_proj = TFConv1D(nx, n_state, name='c_proj')
thomwolf's avatar
WIP  
thomwolf committed
235
        self.act = gelu
thomwolf's avatar
thomwolf committed
236
        self.dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
237

238
    # @tf.function
thomwolf's avatar
thomwolf committed
239
    def call(self, x, training=False):
thomwolf's avatar
WIP  
thomwolf committed
240
241
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
thomwolf's avatar
thomwolf committed
242
243
244
        if training:
            h2 = self.dropout(h2)
        return h2
thomwolf's avatar
WIP  
thomwolf committed
245
246


thomwolf's avatar
thomwolf committed
247
248
249
class TFBlock(tf.keras.layers.Layer):
    def __init__(self, n_ctx, config, scale=False, **kwargs):
        super(TFBlock, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
250
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
251
252
253
254
        self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_1')
        self.attn = TFAttention(nx, n_ctx, config, scale, name='attn')
        self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_2')
        self.mlp = TFMLP(4 * nx, config, name='mlp')
thomwolf's avatar
WIP  
thomwolf committed
255

256
    # @tf.function
thomwolf's avatar
thomwolf committed
257
258
    def call(self, inputs, training=False):
        x, layer_past, attention_mask, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
259

thomwolf's avatar
thomwolf committed
260
261
262
        a = self.ln_1(x)
        output_attn = self.attn([a, layer_past, attention_mask, head_mask], training=training)
        a = output_attn[0]  # output_attn: a, present, (attentions)
thomwolf's avatar
WIP  
thomwolf committed
263
        x = x + a
thomwolf's avatar
thomwolf committed
264
265
266

        m = self.ln_2(x)
        m = self.mlp(m, training=training)
thomwolf's avatar
WIP  
thomwolf committed
267
268
269
270
271
        x = x + m

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)

thomwolf's avatar
thomwolf committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
class TFGPT2Embeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config, **kwargs):
        super(TFGPT2Embeddings, self).__init__(**kwargs)
        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size

    def build(self, input_shape):
        """Build shared word embedding layer
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        self.weight = self.add_weight(
            "weight",
thomwolf's avatar
thomwolf committed
287
            shape=[self.vocab_size, self.hidden_size],
thomwolf's avatar
thomwolf committed
288
            initializer=tf.random_normal_initializer(
thomwolf's avatar
thomwolf committed
289
290
                mean=0., stddev=self.hidden_size**-0.5))
        super(TFGPT2Embeddings, self).build(input_shape)
thomwolf's avatar
thomwolf committed
291

292
    # @tf.function
thomwolf's avatar
thomwolf committed
293
    def call(self, inputs, mode="embedding"):
thomwolf's avatar
thomwolf committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        """Get token embeddings of inputs.
        Args:
            inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.
        
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
thomwolf's avatar
thomwolf committed
309
            return self._embedding(inputs)
thomwolf's avatar
thomwolf committed
310
311
312
313
314
315
316
317
318
319
320
321
        elif mode == "linear":
            return self._linear(inputs)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
            Args:
322
                inputs: A float32 tensor with shape [..., hidden_size]
thomwolf's avatar
thomwolf committed
323
            Returns:
324
                float32 tensor with shape [..., vocab_size].
thomwolf's avatar
thomwolf committed
325
        """
326
        first_dims = shape_list(inputs)[:-1]
thomwolf's avatar
thomwolf committed
327

thomwolf's avatar
thomwolf committed
328
        x = tf.reshape(inputs, [-1, self.hidden_size])
thomwolf's avatar
thomwolf committed
329
330
        logits = tf.matmul(x, self.weight, transpose_b=True)

331
        return tf.reshape(logits, first_dims + [self.vocab_size])
thomwolf's avatar
thomwolf committed
332
333
334
335
336
337

class TFGPT2MainLayer(tf.keras.layers.Layer):
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2MainLayer, self).__init__(config, *inputs, **kwargs)
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
thomwolf's avatar
thomwolf committed
338
        self.num_hidden_layers = config.n_layer
thomwolf's avatar
thomwolf committed
339
340
341
342
343
344
        self.vocab_size = config.vocab_size
        self.n_embd = config.n_embd

        self.wte = TFGPT2Embeddings(config, name='wte')
        self.wpe = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='wpe')
        self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
345
        self.h = [TFBlock(config.n_ctx, config, scale=True, name='h_{}'.format(i)) for i in range(config.n_layer)]
thomwolf's avatar
thomwolf committed
346
347
348
349
350
351
352
353
354
355
356
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f')

    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        raise NotImplementedError

357
    # @tf.function
thomwolf's avatar
thomwolf committed
358
359
360
    def call(self, inputs, training=False):
        if not isinstance(inputs, (dict, tuple, list)):
            input_ids = inputs
thomwolf's avatar
thomwolf committed
361
            past, attention_mask, token_type_ids, position_ids, head_mask = None, None, None, None, None
thomwolf's avatar
thomwolf committed
362
363
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
364
365
366
367
368
369
            past = inputs[1] if len(inputs) > 1 else None
            attention_mask = inputs[2] if len(inputs) > 2 else None
            token_type_ids = inputs[3] if len(inputs) > 3 else None
            position_ids = inputs[4] if len(inputs) > 4 else None
            head_mask = inputs[5] if len(inputs) > 5 else None
            assert len(inputs) <= 6, "Too many inputs."
thomwolf's avatar
thomwolf committed
370
371
        else:
            input_ids = inputs.get('input_ids')
thomwolf's avatar
thomwolf committed
372
            past = inputs.get('past', None)
thomwolf's avatar
thomwolf committed
373
374
375
376
377
378
379
380
381
382
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
thomwolf's avatar
thomwolf committed
383
            past_length = shape_list(past[0][0])[-2]
thomwolf's avatar
thomwolf committed
384
        if position_ids is None:
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
            position_ids = tf.range(past_length, shape_list(input_ids)[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]

        if attention_mask is not None:
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.

            attention_mask = tf.cast(attention_mask, tf.float32)
            attention_mask = (1.0 - attention_mask) * -10000.0
        else:
            attention_mask = None
thomwolf's avatar
thomwolf committed
405
406
407
408

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
409
410
411
412
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if not head_mask is None:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
413
        else:
thomwolf's avatar
thomwolf committed
414
415
            head_mask = [None] * self.num_hidden_layers
            # head_mask = tf.constant([0] * self.num_hidden_layers)
thomwolf's avatar
thomwolf committed
416

thomwolf's avatar
thomwolf committed
417
418
419
        input_shape = shape_list(input_ids)
        input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
        position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
thomwolf's avatar
thomwolf committed
420

thomwolf's avatar
thomwolf committed
421
        inputs_embeds = self.wte(input_ids, mode='embedding')
thomwolf's avatar
thomwolf committed
422
423
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
thomwolf's avatar
thomwolf committed
424
425
            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
            token_type_embeds = self.wte(token_type_ids, mode='embedding')
thomwolf's avatar
thomwolf committed
426
427
428
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
429
430
        if training:
            hidden_states = self.drop(hidden_states)
thomwolf's avatar
thomwolf committed
431

thomwolf's avatar
thomwolf committed
432
        output_shape = input_shape + [shape_list(hidden_states)[-1]]
thomwolf's avatar
thomwolf committed
433
434
435
436
437
438

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
439
440
441
                all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)

            outputs = block([hidden_states, layer_past, attention_mask, head_mask[i]], training=training)
thomwolf's avatar
thomwolf committed
442
443
444

            hidden_states, present = outputs[:2]
            presents = presents + (present,)
thomwolf's avatar
WIP  
thomwolf committed
445

thomwolf's avatar
thomwolf committed
446
447
448
449
450
            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.ln_f(hidden_states)

thomwolf's avatar
thomwolf committed
451
        hidden_states = tf.reshape(hidden_states, output_shape)
thomwolf's avatar
thomwolf committed
452
453
454
455
456
457
458
459
460
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states, presents)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
thomwolf's avatar
thomwolf committed
461
462
            attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
            all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
thomwolf's avatar
thomwolf committed
463
464
465
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)

thomwolf's avatar
thomwolf committed
466

thomwolf's avatar
thomwolf committed
467
class TFGPT2PreTrainedModel(TFPreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
468
469
470
471
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = GPT2Config
thomwolf's avatar
thomwolf committed
472
    pretrained_model_archive_map = TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
473
    load_pt_weights = load_gpt2_pt_weights_in_tf2
thomwolf's avatar
WIP  
thomwolf committed
474
475
476
477
478
479
480
481
482
    base_model_prefix = "transformer"


GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

thomwolf's avatar
thomwolf committed
483
484
    This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.
thomwolf's avatar
WIP  
thomwolf committed
485
486
487
488

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

thomwolf's avatar
thomwolf committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    .. _`tf.keras.Model`:
        https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model

    Important note on the model inputs:
        The inputs of the TF 2.0 models are slightly different from the PyTorch ones since
        TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor.
        More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`.
        There are three possibilities to gather and feed the inputs to the model:

        - a single Tensor with input_ids only and nothing else: `model(inputs_ids)
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
            `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associaed to the input names given in the docstring:
            `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
thomwolf's avatar
WIP  
thomwolf committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

    Parameters:
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

GPT2_INPUTS_DOCSTRING = r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
522
523
524
525
526
527
528
529
530
531
532
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
WIP  
thomwolf committed
533
534
535
536
537
538
539
540
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
541
class TFGPT2Model(TFGPT2PreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
561
        model = GPT2Model.from_pretrained('gpt2')
thomwolf's avatar
WIP  
thomwolf committed
562
563
564
565
566
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
thomwolf's avatar
thomwolf committed
567
568
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2Model, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
569
        self.transformer = TFGPT2MainLayer(config, name='transformer')
thomwolf's avatar
thomwolf committed
570

571
    # @tf.function
thomwolf's avatar
thomwolf committed
572
    def call(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
573
574
        outputs = self.transformer(inputs, training=training)
        return outputs
thomwolf's avatar
WIP  
thomwolf committed
575
576
577
578


@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
579
class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
thomwolf's avatar
thomwolf committed
605
606
        outputs = model(input_ids)
        logits = outputs[:2]
thomwolf's avatar
WIP  
thomwolf committed
607
608

    """
thomwolf's avatar
thomwolf committed
609
610
611
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2LMHeadModel, self).__init__(config, *inputs, **kwargs)
        self.transformer = TFGPT2MainLayer(config, name='transformer')
thomwolf's avatar
WIP  
thomwolf committed
612

613
    # @tf.function
thomwolf's avatar
thomwolf committed
614
615
    def call(self, inputs, training=False):
        transformer_outputs = self.transformer(inputs, training=training)
thomwolf's avatar
WIP  
thomwolf committed
616
617
        hidden_states = transformer_outputs[0]

thomwolf's avatar
thomwolf committed
618
        lm_logits = self.transformer.wte(hidden_states, mode="linear")
thomwolf's avatar
WIP  
thomwolf committed
619
620
621

        outputs = (lm_logits,) + transformer_outputs[1:]

thomwolf's avatar
thomwolf committed
622
        return outputs  # lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
WIP  
thomwolf committed
623
624
625
626
627
628


@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the input sequence).
thomwolf's avatar
thomwolf committed
629
630
631
632
""", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
    r"""
        **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
thomwolf's avatar
WIP  
thomwolf committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
677
678
679
680
681
682
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2DoubleHeadsModel, self).__init__(config, *inputs, **kwargs)
        self.transformer = TFGPT2MainLayer(config, name='transformer')
        self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head')


683
    # @tf.function
thomwolf's avatar
thomwolf committed
684
685
    def call(self, inputs, training=False):
        if not isinstance(inputs, (dict, tuple, list)):
686
687
            input_ids = inputs
            mc_token_ids, past, attention_mask, token_type_ids, position_ids, head_mask = None, None, None, None, None
thomwolf's avatar
thomwolf committed
688
689
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
690
            mc_token_ids = inputs[1] if len(inputs) > 1 else None
thomwolf's avatar
thomwolf committed
691
692
693
694
695
696
697
698
            past = inputs[2] if len(inputs) > 2 else None
            attention_mask = inputs[3] if len(inputs) > 3 else None
            token_type_ids = inputs[4] if len(inputs) > 4 else None
            position_ids = inputs[5] if len(inputs) > 5 else None
            head_mask = inputs[6] if len(inputs) > 6 else None
            assert len(inputs) <= 7, "Too many inputs."
        else:
            input_ids = inputs.get('input_ids')
699
            mc_token_ids = inputs.get('mc_token_ids', None)
thomwolf's avatar
thomwolf committed
700
701
702
703
704
705
706
            past = inputs.get('past', None)
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."

707
708
709
        input_shapes = shape_list(input_ids)

        seq_length = input_shapes[-1]
thomwolf's avatar
thomwolf committed
710
711
712
713
714
715
716
717

        flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
        flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
        flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
        flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None

        flat_inputs = [flat_input_ids, past, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]

718
        transformer_outputs = self.transformer(flat_inputs, training=training)
thomwolf's avatar
WIP  
thomwolf committed
719
720
        hidden_states = transformer_outputs[0]

721
722
        hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])

thomwolf's avatar
thomwolf committed
723
724
        lm_logits = self.transformer.wte(hidden_states, mode="linear")
        mc_logits = self.multiple_choice_head([hidden_states, mc_token_ids], training=training)
thomwolf's avatar
WIP  
thomwolf committed
725

726
727
        mc_logits = tf.squeeze(mc_logits, axis=-1)

thomwolf's avatar
WIP  
thomwolf committed
728
729
730
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)