run_squad.py 49.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
22
import collections
import json
thomwolf's avatar
thomwolf committed
23
import logging
thomwolf's avatar
thomwolf committed
24
25
import math
import os
26
import random
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29

thomwolf's avatar
thomwolf committed
30
import numpy as np
31
import torch
thomwolf's avatar
thomwolf committed
32
33
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
34
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
35
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
36

37
38
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering, BertConfig
39
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
thomwolf's avatar
thomwolf committed
40
41
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,
                                                  BertTokenizer,
42
                                                  whitespace_tokenize)
thomwolf's avatar
thomwolf committed
43
44
45
46
47

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
48

49
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
50
51
52


class SquadExample(object):
thomwolf's avatar
thomwolf committed
53
54
55
56
    """
    A single training/test example for the Squad dataset.
    For examples without an answer, the start and end position are -1.
    """
57
58
59
60
61
62
63

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
thomwolf's avatar
thomwolf committed
64
65
                 end_position=None,
                 is_impossible=None):
66
67
68
69
70
71
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
72
        self.is_impossible = is_impossible
73
74
75
76
77
78

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
79
        s += "qas_id: %s" % (self.qas_id)
80
        s += ", question_text: %s" % (
81
            self.question_text)
82
83
84
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
thomwolf's avatar
thomwolf committed
85
        if self.end_position:
86
            s += ", end_position: %d" % (self.end_position)
thomwolf's avatar
thomwolf committed
87
        if self.is_impossible:
thomwolf's avatar
thomwolf committed
88
            s += ", is_impossible: %r" % (self.is_impossible)
89
        return s
thomwolf's avatar
thomwolf committed
90
91
92


class InputFeatures(object):
93
94
95
96
97
98
99
100
101
102
103
104
105
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
thomwolf's avatar
thomwolf committed
106
107
                 end_position=None,
                 is_impossible=None):
108
109
110
111
112
113
114
115
116
117
118
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
119
        self.is_impossible = is_impossible
thomwolf's avatar
thomwolf committed
120
121


thomwolf's avatar
thomwolf committed
122
def read_squad_examples(input_file, is_training, version_2_with_negative):
123
    """Read a SQuAD json file into a list of SquadExample."""
124
    with open(input_file, "r", encoding='utf-8') as reader:
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        input_data = json.load(reader)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
thomwolf's avatar
thomwolf committed
156
                is_impossible = False
157
                if is_training:
thomwolf's avatar
thomwolf committed
158
159
160
                    if version_2_with_negative:
                        is_impossible = qa["is_impossible"]
                    if (len(qa["answers"]) != 1) and (not is_impossible):
161
162
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
thomwolf's avatar
thomwolf committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
                    if not is_impossible:
                        answer = qa["answers"][0]
                        orig_answer_text = answer["text"]
                        answer_offset = answer["answer_start"]
                        answer_length = len(orig_answer_text)
                        start_position = char_to_word_offset[answer_offset]
                        end_position = char_to_word_offset[answer_offset + answer_length - 1]
                        # Only add answers where the text can be exactly recovered from the
                        # document. If this CAN'T happen it's likely due to weird Unicode
                        # stuff so we will just skip the example.
                        #
                        # Note that this means for training mode, every example is NOT
                        # guaranteed to be preserved.
                        actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
                        cleaned_answer_text = " ".join(
                            whitespace_tokenize(orig_answer_text))
                        if actual_text.find(cleaned_answer_text) == -1:
                            logger.warning("Could not find answer: '%s' vs. '%s'",
181
                                           actual_text, cleaned_answer_text)
thomwolf's avatar
thomwolf committed
182
183
184
185
186
                            continue
                    else:
                        start_position = -1
                        end_position = -1
                        orig_answer_text = ""
187
188
189
190
191
192
193

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
thomwolf's avatar
thomwolf committed
194
195
                    end_position=end_position,
                    is_impossible=is_impossible)
196
197
                examples.append(example)
    return examples
thomwolf's avatar
thomwolf committed
198
199
200
201


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training):
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
thomwolf's avatar
thomwolf committed
225
226
227
228
        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1
        if is_training and not example.is_impossible:
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
thomwolf's avatar
thomwolf committed
300
            if is_training and not example.is_impossible:
301
302
303
304
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
thomwolf's avatar
thomwolf committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                out_of_span = False
                if not (tok_start_position >= doc_start and
                        tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset
            if is_training and example.is_impossible:
                start_position = 0
                end_position = 0
319
            if example_index < 20:
320
321
322
323
                logger.info("*** Example ***")
                logger.info("unique_id: %s" % (unique_id))
                logger.info("example_index: %s" % (example_index))
                logger.info("doc_span_index: %s" % (doc_span_index))
324
                logger.info("tokens: %s" % " ".join(tokens))
thomwolf's avatar
thomwolf committed
325
326
                logger.info("token_to_orig_map: %s" % " ".join([
                    "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
327
                logger.info("token_is_max_context: %s" % " ".join([
thomwolf's avatar
thomwolf committed
328
                    "%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
329
                ]))
330
331
                logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                logger.info(
332
                    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
333
                logger.info(
334
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
thomwolf's avatar
thomwolf committed
335
336
337
                if is_training and example.is_impossible:
                    logger.info("impossible example")
                if is_training and not example.is_impossible:
338
                    answer_text = " ".join(tokens[start_position:(end_position + 1)])
339
340
341
                    logger.info("start_position: %d" % (start_position))
                    logger.info("end_position: %d" % (end_position))
                    logger.info(
342
                        "answer: %s" % (answer_text))
343
344
345
346
347
348
349
350
351
352
353
354
355

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
thomwolf's avatar
thomwolf committed
356
357
                    end_position=end_position,
                    is_impossible=example.is_impossible))
358
359
360
            unique_id += 1

    return features
thomwolf's avatar
thomwolf committed
361
362
363
364


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)
thomwolf's avatar
thomwolf committed
398
399
400


def _check_is_max_context(doc_spans, cur_span_index, position):
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441
442


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
443
444
445
                      output_nbest_file, output_null_log_odds_file, verbose_logging,
                      version_2_with_negative, null_score_diff_threshold):
    """Write final predictions to the json file and log-odds of null if needed."""
446
447
    logger.info("Writing predictions to: %s" % (output_prediction_file))
    logger.info("Writing nbest to: %s" % (output_nbest_file))
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
thomwolf's avatar
thomwolf committed
463
464
    scores_diff_json = collections.OrderedDict()

465
466
467
468
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
thomwolf's avatar
thomwolf committed
469
470
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
Yongbo Wang's avatar
typo  
Yongbo Wang committed
471
        min_null_feature_index = 0  # the paragraph slice with min null score
thomwolf's avatar
thomwolf committed
472
473
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
474
475
476
477
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
thomwolf's avatar
thomwolf committed
478
479
480
481
482
483
484
485
            # if we could have irrelevant answers, get the min score of irrelevant
            if version_2_with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))
thomwolf's avatar
thomwolf committed
513
514
515
516
517
518
519
520
        if version_2_with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit))
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
thomwolf's avatar
thomwolf committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
                if final_text in seen_predictions:
                    continue
554

thomwolf's avatar
thomwolf committed
555
556
557
558
                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True
559
560
561
562
563
564

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))
thomwolf's avatar
thomwolf committed
565
566
567
568
569
570
571
572
        # if we didn't include the empty option in the n-best, include it
        if version_2_with_negative:
            if "" not in seen_predictions:
                nbest.append(
                    _NbestPrediction(
                        text="",
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
573
574
575
576
577
578
579
                
            # In very rare edge cases we could only have single null prediction.
            # So we just create a nonce prediction in this case to avoid failure.
            if len(nbest)==1:
                nbest.insert(0,
                    _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
                
580
581
582
583
584
585
586
587
588
        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
thomwolf's avatar
thomwolf committed
589
        best_non_null_entry = None
590
591
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
thomwolf's avatar
thomwolf committed
592
593
594
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry
595
596
597
598
599
600
601
602
603
604
605
606
607
608

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

thomwolf's avatar
thomwolf committed
609
610
611
612
613
614
615
616
617
618
619
        if not version_2_with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:
            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null - best_non_null_entry.start_logit - (
                best_non_null_entry.end_logit)
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text
tguens's avatar
tguens committed
620
        all_nbest_json[example.qas_id] = nbest_json
621

622
    with open(output_prediction_file, "w") as writer:
623
624
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

625
    with open(output_nbest_file, "w") as writer:
626
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
thomwolf's avatar
thomwolf committed
627

thomwolf's avatar
thomwolf committed
628
629
630
631
    if version_2_with_negative:
        with open(output_null_log_odds_file, "w") as writer:
            writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

thomwolf's avatar
thomwolf committed
632

thomwolf's avatar
thomwolf committed
633
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
Yongbo Wang's avatar
Yongbo Wang committed
657
658
    # Therefore, we have to apply a semi-complicated alignment heuristic between
    # `pred_text` and `orig_text` to get a character-to-character alignment. This
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
thomwolf's avatar
thomwolf committed
676
    tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
677
678
679
680
681

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
thomwolf's avatar
thomwolf committed
682
        if verbose_logging:
683
            logger.info(
684
685
686
687
688
689
690
691
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
thomwolf's avatar
thomwolf committed
692
        if verbose_logging:
693
            logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
thomwolf's avatar
thomwolf committed
694
                        orig_ns_text, tok_ns_text)
695
696
697
698
699
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
thomwolf's avatar
thomwolf committed
700
    for (i, tok_index) in tok_ns_to_s_map.items():
701
702
703
704
705
706
707
708
709
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
thomwolf's avatar
thomwolf committed
710
        if verbose_logging:
711
            logger.info("Couldn't map start position")
712
713
714
715
716
717
718
719
720
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
thomwolf's avatar
thomwolf committed
721
        if verbose_logging:
722
            logger.info("Couldn't map end position")
723
724
725
726
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text
thomwolf's avatar
thomwolf committed
727
728
729


def _get_best_indexes(logits, n_best_size):
730
731
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
thomwolf's avatar
thomwolf committed
732

733
734
735
736
737
738
    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes
thomwolf's avatar
thomwolf committed
739
740
741


def _compute_softmax(scores):
742
743
744
    """Compute softmax probability over raw logits."""
    if not scores:
        return []
thomwolf's avatar
thomwolf committed
745

746
747
748
749
    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score
thomwolf's avatar
thomwolf committed
750

751
752
753
754
755
756
    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x
thomwolf's avatar
thomwolf committed
757

758
759
760
761
    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs
thomwolf's avatar
thomwolf committed
762

763
764
765
766
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
767
768
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
769
770
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
771
    parser.add_argument("--output_dir", default=None, type=str, required=True,
772
                        help="The output directory where the model checkpoints and predictions will be written.")
773
774
775
776
777
778
779
780
781
782
783
784
785

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
786
787
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
788
789
790
791
792
793
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
thomwolf's avatar
thomwolf committed
794
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
795
796
797
798
799
800
801
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
802
    parser.add_argument("--verbose_logging", action='store_true',
803
804
805
806
807
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
808
809
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
810
811
                        default=42,
                        help="random seed for initialization")
812
813
814
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
815
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
816
817
818
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
819
820
821
822
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
823
824
825
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
826
    parser.add_argument('--loss_scale',
827
828
829
830
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
831
832
833
834
835
836
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
thomwolf's avatar
thomwolf committed
837
838
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
839
    args = parser.parse_args()
thomwolf's avatar
thomwolf committed
840
841
842
843
844
845
846
847
    print(args)

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()
848
849
850
851
852

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
853
        torch.cuda.set_device(args.local_rank)
854
855
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
856
857
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
858
859
860
861
862

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

863
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
864
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
865

866
867
868
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
869

870
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
871
872
873
874

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
875
876
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
877
878

    if not args.do_train and not args.do_predict:
879
880
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

881
882
    if args.do_train:
        if not args.train_file:
883
884
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
885
886
    if args.do_predict:
        if not args.predict_file:
887
888
889
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

890
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
891
        raise ValueError("Output directory () already exists and is not empty.")
thomwolf's avatar
thomwolf committed
892
893
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
894

895
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
896

samuel.broscheit's avatar
samuel.broscheit committed
897
    # Prepare model
thomwolf's avatar
oups  
thomwolf committed
898
    model = BertForQuestionAnswering.from_pretrained(args.bert_model)
thomwolf's avatar
thomwolf committed
899
                # cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)))
samuel.broscheit's avatar
samuel.broscheit committed
900
901
902
903
904

    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
905
906
907
908
    #     try:
    #         from apex.parallel import DistributedDataParallel as DDP
    #     except ImportError:
    #         raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
samuel.broscheit's avatar
samuel.broscheit committed
909

910
        model = torch.nn.parallel.DistributedDataParallel(model)
samuel.broscheit's avatar
samuel.broscheit committed
911
912
913
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

914
    if args.do_train:
samuel.broscheit's avatar
samuel.broscheit committed
915
916
917

        # Prepare data loader

918
        train_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
919
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
                    pickle.dump(train_features, writer)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
949
        num_train_optimization_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
950
951
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
952

samuel.broscheit's avatar
samuel.broscheit committed
953
        # Prepare optimizer
954

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
        param_optimizer = list(model.named_parameters())

        # hack to remove pooler, which is not used
        # thus it produce None grad that break apex
        param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]

        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)
984
        else:
985
986
987
988
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
989

samuel.broscheit's avatar
samuel.broscheit committed
990
991
        global_step = 0

992
993
994
995
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
996
        logger.info("  Num steps = %d", num_train_optimization_steps)
997
998

        model.train()
999
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
1000
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
thomwolf's avatar
thomwolf committed
1001
1002
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
1003
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
1004
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
1005
1006
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
1007
1008
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
1009
1010
1011
1012
1013

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
1014
                if (step + 1) % args.gradient_accumulation_steps == 0:
1015
1016
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
thomwolf's avatar
thomwolf committed
1017
                        # if args.fp16 is False, BertAdam is used and handles this automatically
1018
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
1019
1020
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
1021
1022
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
1023
                    global_step += 1
1024

1025
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
1026
        # Save a trained model, configuration and tokenizer
1027
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
1028
1029

        # If we save using the predefined names, we can load using `from_pretrained`
1030
1031
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
1032
1033
1034

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
1035
        tokenizer.save_vocabulary(args.output_dir)
1036

1037
1038
        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForQuestionAnswering.from_pretrained(args.output_dir)
1039
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
1040
1041
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
1042

1043
    model.to(device)
1044

1045
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
1046
        eval_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
1047
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
1048
1049
1050
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
1051
1052
1053
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
1054
1055
            is_training=False)

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
1066
1067
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
1068
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
1069

1070
        model.eval()
1071
        all_results = []
thomwolf's avatar
thomwolf committed
1072
        logger.info("Start evaluating")
1073
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]):
1074
            if len(all_results) % 1000 == 0:
1075
1076
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
1077
            input_mask = input_mask.to(device)
1078
            segment_ids = segment_ids.to(device)
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
1089
1090
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
thomwolf's avatar
thomwolf committed
1091
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
1092
        write_predictions(eval_examples, eval_features, all_results,
1093
1094
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
1095
1096
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
thomwolf's avatar
thomwolf committed
1097
1098
1099


if __name__ == "__main__":
1100
    main()