modeling_openai.py 29.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
34
35
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_openai import OpenAIGPTConfig
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
logger = logging.getLogger(__name__)

39
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
40

41

42
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
43
44
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
45
46
    import re
    import numpy as np
47
48
49
50
51
52

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

53
54
55
56
57
58
59
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
60
    # This was used when we had a single embedding matrix for positions and tokens
61
62
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
63
64
65
    init_params = [arr.squeeze() for arr in init_params]

    try:
66
67
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
68
    except AssertionError as e:
69
70
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
71
72
        raise

73
74
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
75
    names.pop(0)
76
77
    # Pop position and token embedding arrays
    init_params.pop(0)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
112
        logger.info("Initialize PyTorch weight {}".format(name))
113
114
115
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
116
117
118
119
120
121
122
123
124

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


125
126
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
127
128

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
129
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
130
131
132
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
133
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
134
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
135
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
136
137
        self.split_size = n_state
        self.scale = scale
138

thomwolf's avatar
thomwolf committed
139
        self.output_attentions = config.output_attentions
140

141
142
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
143
144
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
145
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
146

147
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
148
149
        if len(heads) == 0:
            return
150
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
151
        heads = set(heads) - self.pruned_heads
152
        for head in heads:
153
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
154
155
156
157
158
159
160
161
162
163
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
164
        self.pruned_heads = self.pruned_heads.union(heads)
165
166

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
167
168
169
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
170
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
171
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
172
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
173
174
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
175
176
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
177
178
179
180
181

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
182
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
183
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
184
185
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

200
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
201
202
203
204
205
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
206

thomwolf's avatar
thomwolf committed
207
208
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
209

thomwolf's avatar
thomwolf committed
210
211
212
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
213
214
215

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
216
217
218


class MLP(nn.Module):
219
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
220
        super(MLP, self).__init__()
221
        nx = config.n_embd
222
223
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
224
225
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
226
227
228
229
230
231
232
233

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
234
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
235
        super(Block, self).__init__()
236
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
237
        self.attn = Attention(nx, n_ctx, config, scale)
238
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
239
        self.mlp = MLP(4 * nx, config)
240
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
241

242
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
243
244
245
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
246
247
248
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
249
250
251

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
252
253


254
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
255
256
257
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
258
    config_class = OpenAIGPTConfig
259
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
260
261
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
262

263
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
264
265
        """ Initialize the weights.
        """
266
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
267
268
269
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
270
271
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
272
        elif isinstance(module, nn.LayerNorm):
thomwolf's avatar
thomwolf committed
273
274
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
275
276


thomwolf's avatar
thomwolf committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
OPENAI_GPT_START_DOCSTRING = r"""    OpenAI GPT model was proposed in
    `Improving Language Understanding by Generative Pre-Training`_
    by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
    It's a causal (unidirectional) transformer pre-trained using language modeling on a large
    corpus will long range dependencies, the Toronto Book Corpus.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Improving Language Understanding by Generative Pre-Training`:
        https://openai.com/blog/language-unsupervised/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
thomwolf's avatar
thomwolf committed
293
        config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model.
294
295
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
296
297
"""

thomwolf's avatar
thomwolf committed
298
OPENAI_GPT_INPUTS_DOCSTRING = r"""    Inputs:
thomwolf's avatar
thomwolf committed
299
300
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
301
302
            GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
thomwolf's avatar
thomwolf committed
303
304
305
306
307
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
308
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
309
310
311
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
312
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices)
thomwolf's avatar
thomwolf committed
313
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
314
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
315
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
316
317
318
319
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare OpenAI GPT transformer model outputing raw hidden-states without any specific head on top.",
thomwolf's avatar
thomwolf committed
320
                      OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
321
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
322
323
324
325
326
327
328
329
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
330
331
332
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
333
334
335

    Examples::

wangfei's avatar
wangfei committed
336
337
338
339
340
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
341
342

    """
thomwolf's avatar
thomwolf committed
343
    def __init__(self, config):
344
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
345
346
347
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
348
        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
349
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
350
        self.drop = nn.Dropout(config.embd_pdrop)
351
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
352

353
        self.init_weights()
thomwolf's avatar
thomwolf committed
354

thomwolf's avatar
thomwolf committed
355
356
    def _resize_token_embeddings(self, new_num_tokens):
        self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens)
thomwolf's avatar
thomwolf committed
357
        return self.tokens_embed
thomwolf's avatar
thomwolf committed
358

thomwolf's avatar
thomwolf committed
359
    def _prune_heads(self, heads_to_prune):
360
361
362
363
364
365
366
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
367
        if position_ids is None:
368
369
370
371
372
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
373
374
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

375
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
376
        # 1.0 in head_mask indicate we keep the head
377
        # attention_probs has shape bsz x n_heads x N x N
378
        # head_mask has shape n_layer x batch x n_heads x N x N
379
380
        if head_mask is not None:
            if head_mask.dim() == 1:
381
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
382
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
383
            elif head_mask.dim() == 2:
384
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
385
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
386
387
        else:
            head_mask = [None] * self.config.n_layer
388

thomwolf's avatar
thomwolf committed
389
390
391
392
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

393
394
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
395
396
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
397
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
398
399
400
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
401
402
        hidden_states = self.drop(hidden_states)

403
404
        output_shape = input_shape + (hidden_states.size(-1),)

405
406
        all_attentions = ()
        all_hidden_states = ()
407
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
408
            if self.output_hidden_states:
409
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
410

411
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
412
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
413
            if self.output_attentions:
414
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
415
416
417

        # Add last layer
        if self.output_hidden_states:
418
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
419

420
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
421
        if self.output_hidden_states:
422
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
423
        if self.output_attentions:
424
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
425
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
426

427

thomwolf's avatar
thomwolf committed
428
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top
thomwolf's avatar
thomwolf committed
429
(linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
430
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
431
    r"""
thomwolf's avatar
thomwolf committed
432
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
thomwolf's avatar
thomwolf committed
433
            Labels for language modeling.
434
            Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids``
thomwolf's avatar
thomwolf committed
435
436
437
438
439
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
thomwolf's avatar
thomwolf committed
440
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
thomwolf's avatar
thomwolf committed
441
442
443
444
445
446
447
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
448
449
450
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
451
452
453

    Examples::

wangfei's avatar
wangfei committed
454
455
456
457
458
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]
459
460

    """
thomwolf's avatar
thomwolf committed
461
    def __init__(self, config):
462
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
463
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
464
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
465

466
        self.init_weights()
thomwolf's avatar
thomwolf committed
467
        self.tie_weights()
468

thomwolf's avatar
thomwolf committed
469
470
471
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
472
        """
thomwolf's avatar
thomwolf committed
473
474
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
475

thomwolf's avatar
thomwolf committed
476
    def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
477
478
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
479
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
480
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
481

482
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
483
        if labels is not None:
484
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
485
            shift_logits = lm_logits[..., :-1, :].contiguous()
thomwolf's avatar
thomwolf committed
486
            shift_labels = labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
487
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
488
            loss_fct = CrossEntropyLoss(ignore_index=-1)
489
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
490
                            shift_labels.view(-1))
491
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
492
493

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
494

495

thomwolf's avatar
thomwolf committed
496
497
498
@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
Julien Chaumond's avatar
Julien Chaumond committed
499
the classification head takes as input the input of a specified classification token index in the input sequence).
thomwolf's avatar
thomwolf committed
500
""", OPENAI_GPT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
501
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
510
511
512
513
    r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
LysandreJik's avatar
LysandreJik committed
514
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
515
516
517
518
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
thomwolf's avatar
thomwolf committed
519
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
520
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
521
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
522
523
524
525
526
527
528
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
529
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
thomwolf's avatar
thomwolf committed
530
531
532
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
533

thomwolf's avatar
thomwolf committed
534
535
            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].
536

thomwolf's avatar
thomwolf committed
537
538
539
540
541
542
543
544
545
546
547
548
549
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
550
551
552
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
553
554
555

    Examples::

wangfei's avatar
wangfei committed
556
557
        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
thomwolf's avatar
thomwolf committed
558
559
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})  # Add a [CLS] to the vocabulary (we should train it also!)
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
wangfei's avatar
wangfei committed
560
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
thomwolf's avatar
thomwolf committed
561
        mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0)  # Batch size 1
wangfei's avatar
wangfei committed
562
563
        outputs = model(input_ids, mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]
564

565
    """
thomwolf's avatar
thomwolf committed
566
    def __init__(self, config):
567
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
568

thomwolf's avatar
thomwolf committed
569
        self.transformer = OpenAIGPTModel(config)
thomwolf's avatar
thomwolf committed
570
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
thomwolf's avatar
thomwolf committed
571
572
        self.multiple_choice_head = SequenceSummary(config)

573
        self.init_weights()
thomwolf's avatar
thomwolf committed
574
        self.tie_weights()
thomwolf's avatar
thomwolf committed
575

thomwolf's avatar
thomwolf committed
576
577
578
    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
579
        """
thomwolf's avatar
thomwolf committed
580
581
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)
thomwolf's avatar
thomwolf committed
582

thomwolf's avatar
thomwolf committed
583
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
584
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
585
586
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               head_mask=head_mask)
thomwolf's avatar
thomwolf committed
587
        hidden_states = transformer_outputs[0]
588

thomwolf's avatar
thomwolf committed
589
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
590
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
591

592
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
593
594
595
596
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
597
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
598
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
599
600
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
601
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
602
603
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
604
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
605
606

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)