modeling_utils.py 90.8 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Patrick von Platen's avatar
Patrick von Platen committed
17
import inspect
18
import os
19
import re
20
import warnings
21
from dataclasses import dataclass
22
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
23
24

import torch
25
from torch import Tensor, device, dtype, nn
26
27
from torch.nn import CrossEntropyLoss
from torch.nn import functional as F
28

29
from .activations import get_activation
30
from .configuration_utils import PretrainedConfig
31
from .file_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
32
    CONFIG_NAME,
Aymeric Augustin's avatar
Aymeric Augustin committed
33
    DUMMY_INPUTS,
34
    FLAX_WEIGHTS_NAME,
35
36
37
    TF2_WEIGHTS_NAME,
    TF_WEIGHTS_NAME,
    WEIGHTS_NAME,
38
    ModelOutput,
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    PushToHubMixin,
40
41
    cached_path,
    hf_bucket_url,
42
    is_offline_mode,
43
    is_remote_url,
Sylvain Gugger's avatar
Sylvain Gugger committed
44
    replace_return_docstrings,
45
)
46
from .generation_utils import GenerationMixin
47
from .integrations import is_deepspeed_zero3_enabled
Lysandre Debut's avatar
Lysandre Debut committed
48
from .utils import logging
49

Aymeric Augustin's avatar
Aymeric Augustin committed
50

Lysandre Debut's avatar
Lysandre Debut committed
51
logger = logging.get_logger(__name__)
52

thomwolf's avatar
thomwolf committed
53
54
55
56
57
try:
    from torch.nn import Identity
except ImportError:
    # Older PyTorch compatibility
    class Identity(nn.Module):
Lysandre's avatar
Lysandre committed
58
        r"""A placeholder identity operator that is argument-insensitive."""
59

thomwolf's avatar
thomwolf committed
60
        def __init__(self, *args, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
61
            super().__init__()
thomwolf's avatar
thomwolf committed
62
63
64
65

        def forward(self, input):
            return input

66

67
def find_pruneable_heads_and_indices(
Sylvain Gugger's avatar
Sylvain Gugger committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    heads: List[int], n_heads: int, head_size: int, already_pruned_heads: Set[int]
) -> Tuple[Set[int], torch.LongTensor]:
    """
    Finds the heads and their indices taking :obj:`already_pruned_heads` into account.

    Args:
        heads (:obj:`List[int]`): List of the indices of heads to prune.
        n_heads (:obj:`int`): The number of heads in the model.
        head_size (:obj:`int`): The size of each head.
        already_pruned_heads (:obj:`Set[int]`): A set of already pruned heads.

    Returns:
        :obj:`Tuple[Set[int], torch.LongTensor]`: A tuple with the remaining heads and their corresponding indices.
    """
82
83
84
85
86
87
88
89
90
91
92
    mask = torch.ones(n_heads, head_size)
    heads = set(heads) - already_pruned_heads  # Convert to set and remove already pruned heads
    for head in heads:
        # Compute how many pruned heads are before the head and move the index accordingly
        head = head - sum(1 if h < head else 0 for h in already_pruned_heads)
        mask[head] = 0
    mask = mask.view(-1).contiguous().eq(1)
    index: torch.LongTensor = torch.arange(len(mask))[mask].long()
    return heads, index


Lysandre Debut's avatar
Lysandre Debut committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).device
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].device


def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
    try:
        return next(parameter.parameters()).dtype
    except StopIteration:
        # For nn.DataParallel compatibility in PyTorch 1.5

        def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
            tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
            return tuples

        gen = parameter._named_members(get_members_fn=find_tensor_attributes)
        first_tuple = next(gen)
        return first_tuple[1].dtype


123
class ModuleUtilsMixin:
Julien Chaumond's avatar
Julien Chaumond committed
124
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
125
    A few utilities for :obj:`torch.nn.Modules`, to be used as a mixin.
Julien Chaumond's avatar
Julien Chaumond committed
126
127
    """

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    @staticmethod
    def _hook_rss_memory_pre_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_pre_forward = mem.rss
        return None

    @staticmethod
    def _hook_rss_memory_post_forward(module, *args, **kwargs):
        try:
            import psutil
        except (ImportError):
            raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")

        process = psutil.Process(os.getpid())
        mem = process.memory_info()
        module.mem_rss_post_forward = mem.rss
        mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
        module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
        return None

    def add_memory_hooks(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
159
        """
        Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.

        Increase in memory consumption is stored in a :obj:`mem_rss_diff` attribute for each module and can be reset to
        zero with :obj:`model.reset_memory_hooks_state()`.
160
161
162
163
164
165
166
        """
        for module in self.modules():
            module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
            module.register_forward_hook(self._hook_rss_memory_post_forward)
        self.reset_memory_hooks_state()

    def reset_memory_hooks_state(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
167
168
169
170
        """
        Reset the :obj:`mem_rss_diff` attribute of each module (see
        :func:`~transformers.modeling_utils.ModuleUtilsMixin.add_memory_hooks`).
        """
171
172
173
174
175
        for module in self.modules():
            module.mem_rss_diff = 0
            module.mem_rss_post_forward = 0
            module.mem_rss_pre_forward = 0

176
    @property
177
    def device(self) -> device:
178
        """
179
180
        :obj:`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
        device).
181
        """
Lysandre Debut's avatar
Lysandre Debut committed
182
        return get_parameter_device(self)
183

184
185
    @property
    def dtype(self) -> dtype:
186
        """
187
        :obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
188
        """
Lysandre Debut's avatar
Lysandre Debut committed
189
        return get_parameter_dtype(self)
190
191

    def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
Sylvain Gugger's avatar
Sylvain Gugger committed
192
193
194
195
196
197
198
199
200
        """
        Invert an attention mask (e.g., switches 0. and 1.).

        Args:
            encoder_attention_mask (:obj:`torch.Tensor`): An attention mask.

        Returns:
            :obj:`torch.Tensor`: The inverted attention mask.
        """
201
202
203
204
205
206
207
208
209
210
        if encoder_attention_mask.dim() == 3:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
        if encoder_attention_mask.dim() == 2:
            encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
        # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
        # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
        # /transformer/transformer_layers.py#L270
        # encoder_extended_attention_mask = (encoder_extended_attention_mask ==
        # encoder_extended_attention_mask.transpose(-1, -2))
        encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
211
212
213
214
215
216
217

        if self.dtype == torch.float16:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e4
        elif self.dtype == torch.float32:
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -1e9
        else:
            raise ValueError(
218
                f"{self.dtype} not recognized. `dtype` should be set to either `torch.float32` or `torch.float16`"
219
220
            )

221
222
        return encoder_extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
223
224
225
    def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
226
227

        Arguments:
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
230
231
232
233
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.
234
235

        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
236
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
237
238
239
240
241
242
243
244
245
246
247
248
249
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if self.config.is_decoder:
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
250
                # in case past_key_values are used we need to add a prefix ones mask to the causal mask
Patrick von Platen's avatar
Patrick von Platen committed
251
252
253
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)

254
255
256
                if causal_mask.shape[1] < attention_mask.shape[1]:
                    prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
                    causal_mask = torch.cat(
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
260
261
262
263
                        [
                            torch.ones(
                                (batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype
                            ),
                            causal_mask,
                        ],
                        axis=-1,
264
265
                    )

266
267
268
269
270
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
        else:
            raise ValueError(
271
                f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
272
273
274
275
276
277
278
279
280
281
282
            )

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

Sylvain Gugger's avatar
Sylvain Gugger committed
283
284
285
    def get_head_mask(
        self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
    ) -> Tensor:
286
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
287
288
289
290
291
292
293
        Prepare the head mask if needed.

        Args:
            head_mask (:obj:`torch.Tensor` with shape :obj:`[num_heads]` or :obj:`[num_hidden_layers x num_heads]`, `optional`):
                The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
            num_hidden_layers (:obj:`int`):
                The number of hidden layers in the model.
294
            is_attention_chunked: (:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
                Whether or not the attentions scores are computed by chunks or not.

297
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
298
299
            :obj:`torch.Tensor` with shape :obj:`[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or
            list with :obj:`[None]` for each layer.
300
301
302
        """
        if head_mask is not None:
            head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
303
304
            if is_attention_chunked is True:
                head_mask = head_mask.unsqueeze(-1)
305
306
307
308
309
310
311
312
313
314
315
316
317
        else:
            head_mask = [None] * num_hidden_layers

        return head_mask

    def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
        """-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
        if head_mask.dim() == 1:
            head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
            head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
        elif head_mask.dim() == 2:
            head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
        assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
318
        head_mask = head_mask.to(dtype=self.dtype)  # switch to float if need + fp16 compatibility
319
320
        return head_mask

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
        """
        Get number of (optionally, trainable or non-embeddings) parameters in the module.

        Args:
            only_trainable (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of trainable parameters

            exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to return only the number of non-embeddings parameters

        Returns:
            :obj:`int`: The number of parameters.
        """

        def parameter_filter(x):
            return (x.requires_grad or not only_trainable) and not (
                isinstance(x, torch.nn.Embedding) and exclude_embeddings
            )

        params = filter(parameter_filter, self.parameters()) if only_trainable else self.parameters()
        return sum(p.numel() for p in params)

    def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
        """
        Helper function to estimate the total number of tokens from the model inputs.

        Args:
            inputs (:obj:`dict`): The model inputs.

        Returns:
            :obj:`int`: The total number of tokens.
        """
        token_inputs = [tensor for key, tensor in input_dict.items() if "input" in key]
        if token_inputs:
            return sum([token_input.numel() for token_input in token_inputs])
        else:
            warnings.warn(
                "Could not estimate the number of tokens of the input, floating-point operations will not be computed"
            )
            return 0

    def floating_point_ops(
        self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
    ) -> int:
        """
        Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
        batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
Sylvain Gugger's avatar
Sylvain Gugger committed
369
        tokens (valid if :obj:`12 * d_model << sequence_length`) as laid out in `this paper
370
        <https://arxiv.org/pdf/2001.08361.pdf>`__ section 2.1. Should be overridden for transformers with parameter
Sylvain Gugger's avatar
Sylvain Gugger committed
371
        re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

        Args:
            batch_size (:obj:`int`):
                The batch size for the forward pass.

            sequence_length (:obj:`int`):
                The number of tokens in each line of the batch.

            exclude_embeddings (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to count embedding and softmax operations.

        Returns:
            :obj:`int`: The number of floating-point operations.
        """

        return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)

Julien Chaumond's avatar
Julien Chaumond committed
389

Sylvain Gugger's avatar
Sylvain Gugger committed
390
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin):
391
392
    r"""
    Base class for all models.
393

394
395
    :class:`~transformers.PreTrainedModel` takes care of storing the configuration of the models and handles methods
    for loading, downloading and saving models as well as a few methods common to all models to:
396

397
398
        * resize the input embeddings,
        * prune heads in the self-attention heads.
399

400
    Class attributes (overridden by derived classes):
Sylvain Gugger's avatar
Sylvain Gugger committed
401

402
403
        - **config_class** (:class:`~transformers.PretrainedConfig`) -- A subclass of
          :class:`~transformers.PretrainedConfig` to use as configuration class for this model architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
        - **load_tf_weights** (:obj:`Callable`) -- A python `method` for loading a TensorFlow checkpoint in a PyTorch
          model, taking as arguments:
406

407
408
            - **model** (:class:`~transformers.PreTrainedModel`) -- An instance of the model on which to load the
              TensorFlow checkpoint.
Sylvain Gugger's avatar
Sylvain Gugger committed
409
410
            - **config** (:class:`~transformers.PreTrainedConfig`) -- An instance of the configuration associated to
              the model.
411
412
413
414
            - **path** (:obj:`str`) -- A path to the TensorFlow checkpoint.

        - **base_model_prefix** (:obj:`str`) -- A string indicating the attribute associated to the base model in
          derived classes of the same architecture adding modules on top of the base model.
415
        - **is_parallelizable** (:obj:`bool`) -- A flag indicating whether this model supports model parallelization.
416
    """
417
    config_class = None
418
    base_model_prefix = ""
419
420
421
422
423
424
425
426
427
    # a list of re pattern of tensor names to ignore from the model when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_missing = None
    # a list of re pattern of tensor names to ignore from the weights when loading the model weights
    # (and avoid unnecessary warnings).
    _keys_to_ignore_on_load_unexpected = None
    # a list of of tensor names to ignore when saving the model (useful for keys that aren't
    # trained, but which are deterministic)
    _keys_to_ignore_on_save = None
428

429
430
    is_parallelizable = False

431
    @property
432
    def dummy_inputs(self) -> Dict[str, torch.Tensor]:
433
434
        """
        :obj:`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
435
        """
436
        return {"input_ids": torch.tensor(DUMMY_INPUTS)}
437

438
    def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
Julien Chaumond's avatar
Julien Chaumond committed
439
        super().__init__()
440
441
        if not isinstance(config, PretrainedConfig):
            raise ValueError(
442
443
444
                f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
                "`PretrainedConfig`. To create a model from a pretrained model use "
                f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
445
            )
446
        # Save config and origin of the pretrained weights if given in model
447
        self.config = config
448
        self.name_or_path = config.name_or_path
449

450
    @property
451
452
453
454
    def base_model(self) -> nn.Module:
        """
        :obj:`torch.nn.Module`: The main body of the model.
        """
455
        return getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
456

457
    def get_input_embeddings(self) -> nn.Module:
458
459
460
461
        """
        Returns the model's input embeddings.

        Returns:
462
            :obj:`nn.Module`: A torch module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
463
        """
464
        base_model = getattr(self, self.base_model_prefix, self)
thomwolf's avatar
thomwolf committed
465
466
467
468
        if base_model is not self:
            return base_model.get_input_embeddings()
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
469

470
    def set_input_embeddings(self, value: nn.Module):
471
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
472
        Set model's input embeddings.
473
474

        Args:
475
            value (:obj:`nn.Module`): A module mapping vocabulary to hidden states.
thomwolf's avatar
thomwolf committed
476
477
478
479
480
481
        """
        base_model = getattr(self, self.base_model_prefix, self)
        if base_model is not self:
            base_model.set_input_embeddings(value)
        else:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
482

483
    def get_output_embeddings(self) -> nn.Module:
484
485
486
487
        """
        Returns the model's output embeddings.

        Returns:
488
            :obj:`nn.Module`: A torch module mapping hidden states to vocabulary.
thomwolf's avatar
thomwolf committed
489
        """
490
        return None  # Overwrite for models with output embeddings
thomwolf's avatar
thomwolf committed
491

492
    def tie_weights(self):
493
494
        """
        Tie the weights between the input embeddings and the output embeddings.
495
496

        If the :obj:`torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning
497
        the weights instead.
thomwolf's avatar
thomwolf committed
498
        """
thomwolf's avatar
thomwolf committed
499
        output_embeddings = self.get_output_embeddings()
500
        if output_embeddings is not None and self.config.tie_word_embeddings:
thomwolf's avatar
thomwolf committed
501
            self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
thomwolf's avatar
thomwolf committed
502

503
        if self.config.is_encoder_decoder and self.config.tie_encoder_decoder:
Weizhen's avatar
Weizhen committed
504
505
            if hasattr(self, self.base_model_prefix):
                self = getattr(self, self.base_model_prefix)
506
507
508
509
510
            self._tie_encoder_decoder_weights(self.encoder, self.decoder, self.base_model_prefix)

    @staticmethod
    def _tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str):
        uninitialized_encoder_weights: List[str] = []
Weizhen's avatar
Weizhen committed
511
512
513
514
        if decoder.__class__ != encoder.__class__:
            logger.info(
                f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
            )
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

        def tie_encoder_to_decoder_recursively(
            decoder_pointer: nn.Module,
            encoder_pointer: nn.Module,
            module_name: str,
            uninitialized_encoder_weights: List[str],
            depth=0,
        ):
            assert isinstance(decoder_pointer, nn.Module) and isinstance(
                encoder_pointer, nn.Module
            ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
            if hasattr(decoder_pointer, "weight"):
                assert hasattr(encoder_pointer, "weight")
                encoder_pointer.weight = decoder_pointer.weight
                if hasattr(decoder_pointer, "bias"):
                    assert hasattr(encoder_pointer, "bias")
                    encoder_pointer.bias = decoder_pointer.bias
                return

            encoder_modules = encoder_pointer._modules
            decoder_modules = decoder_pointer._modules
            if len(decoder_modules) > 0:
                assert (
                    len(encoder_modules) > 0
                ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"

                all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
                encoder_layer_pos = 0
                for name, module in decoder_modules.items():
                    if name.isdigit():
                        encoder_name = str(int(name) + encoder_layer_pos)
                        decoder_name = name
Weizhen's avatar
Weizhen committed
547
548
549
                        if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
                            encoder_modules
                        ) != len(decoder_modules):
550
551
                            # this can happen if the name corresponds to the position in a list module list of layers
                            # in this case the decoder has added a cross-attention that the encoder does not have
552
                            # thus skip this step and subtract one layer pos from encoder
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
                            encoder_layer_pos -= 1
                            continue
                    elif name not in encoder_modules:
                        continue
                    elif depth > 500:
                        raise ValueError(
                            "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
                        )
                    else:
                        decoder_name = encoder_name = name
                    tie_encoder_to_decoder_recursively(
                        decoder_modules[decoder_name],
                        encoder_modules[encoder_name],
                        module_name + "/" + name,
                        uninitialized_encoder_weights,
                        depth=depth + 1,
                    )
                    all_encoder_weights.remove(module_name + "/" + encoder_name)

                uninitialized_encoder_weights += list(all_encoder_weights)

        # tie weights recursively
        tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights)
        if len(uninitialized_encoder_weights) > 0:
            logger.warning(
                f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
            )

581
    def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
Lysandre's avatar
Lysandre committed
582
        """Tie or clone module weights depending of whether we are using TorchScript or not"""
thomwolf's avatar
thomwolf committed
583
        if self.config.torchscript:
584
            output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
thomwolf's avatar
thomwolf committed
585
        else:
586
            output_embeddings.weight = input_embeddings.weight
thomwolf's avatar
thomwolf committed
587

Sam Shleifer's avatar
Sam Shleifer committed
588
        if getattr(output_embeddings, "bias", None) is not None:
589
590
            output_embeddings.bias.data = torch.nn.functional.pad(
                output_embeddings.bias.data,
Lysandre's avatar
Lysandre committed
591
592
593
594
                (
                    0,
                    output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
                ),
595
596
                "constant",
                0,
597
            )
598
        if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
599
            output_embeddings.out_features = input_embeddings.num_embeddings
600

601
602
603
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> torch.nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if :obj:`new_num_tokens != config.vocab_size`.
604

605
        Takes care of tying weights embeddings afterwards if the model class has a :obj:`tie_weights()` method.
thomwolf's avatar
thomwolf committed
606

607
608
609
610
        Arguments:
            new_num_tokens (:obj:`int`, `optional`):
                The number of new tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or :obj:`None`,
611
                just returns a pointer to the input tokens :obj:`torch.nn.Embedding` module of the model without doing
612
613
614
615
                anything.

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
thomwolf's avatar
thomwolf committed
616
        """
617
        model_embeds = self._resize_token_embeddings(new_num_tokens)
thomwolf's avatar
thomwolf committed
618
619
        if new_num_tokens is None:
            return model_embeds
thomwolf's avatar
thomwolf committed
620
621
622

        # Update base model and current model config
        self.config.vocab_size = new_num_tokens
623
        self.vocab_size = new_num_tokens
thomwolf's avatar
thomwolf committed
624
625

        # Tie weights again if needed
626
        self.tie_weights()
thomwolf's avatar
thomwolf committed
627

thomwolf's avatar
thomwolf committed
628
629
        return model_embeds

630
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
631
632
633
        old_embeddings = self.get_input_embeddings()
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.set_input_embeddings(new_embeddings)
634
635
636
637
638
639
640

        # if word embeddings are not tied, make sure that lm head is resized as well
        if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
            old_lm_head = self.get_output_embeddings()
            new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
            self.set_output_embeddings(new_lm_head)

thomwolf's avatar
thomwolf committed
641
        return self.get_input_embeddings()
642

643
644
645
    def _get_resized_embeddings(
        self, old_embeddings: torch.nn.Embedding, new_num_tokens: Optional[int] = None
    ) -> torch.nn.Embedding:
646
647
648
        """
        Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
        initialized vectors at the end. Reducing the size will remove vectors from the end
649
650

        Args:
651
            old_embeddings (:obj:`torch.nn.Embedding`):
652
                Old embeddings to be resized.
653
            new_num_tokens (:obj:`int`, `optional`):
654
                New number of tokens in the embedding matrix.
655
656
657

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
658
                :obj:`torch.nn.Embedding`` module of the model without doing anything.
659
660
661
662

        Return:
            :obj:`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
            :obj:`new_num_tokens` is :obj:`None`
663
664
665
666
        """
        if new_num_tokens is None:
            return old_embeddings

667
668
669
670
671
672
673
674
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
                old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
        else:
            old_num_tokens, old_embedding_dim = old_embeddings.weight.size()

675
676
677
        if old_num_tokens == new_num_tokens:
            return old_embeddings

678
679
680
681
682
683
        if not isinstance(old_embeddings, nn.Embedding):
            raise TypeError(
                f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}."
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Embedding}."
            )

684
        # Build new embeddings
685
        new_embeddings = nn.Embedding(new_num_tokens, old_embedding_dim).to(self.device)
686
687
688
689

        # initialize all new embeddings (in particular added tokens)
        self._init_weights(new_embeddings)

690
        # Copy token embeddings from the previous weights
691
692
693
694
695
696
697
698
699
700
701

        # numbers of tokens to copy
        n = min(old_num_tokens, new_num_tokens)
        if is_deepspeed_zero3_enabled():
            import deepspeed

            with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=0):
                if torch.distributed.get_rank() == 0:
                    new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
        else:
            new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
702
703
704

        return new_embeddings

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    def _get_resized_lm_head(
        self, old_lm_head: torch.nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
    ) -> torch.nn.Linear:
        """
        Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
        vectors at the end. Reducing the size will remove vectors from the end

        Args:
            old_lm_head (:obj:`torch.nn.Linear`):
                Old lm head liner layer to be resized.
            new_num_tokens (:obj:`int`, `optional`):
                New number of tokens in the linear matrix.

                Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
                vectors from the end. If not provided or :obj:`None`, just returns a pointer to the input tokens
                :obj:`torch.nn.Linear`` module of the model without doing anything.
            transposed (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether ``old_lm_head`` is transposed or not. If True ``old_lm_head.size()`` is ``lm_head_dim,
                vocab_size`` else ``vocab_size, lm_head_dim``.

        Return:
            :obj:`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if
            :obj:`new_num_tokens` is :obj:`None`
        """
        if new_num_tokens is None:
            return old_lm_head

        old_num_tokens, old_lm_head_dim = (
            old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
        )

        if old_num_tokens == new_num_tokens:
            return old_lm_head

        if not isinstance(old_lm_head, nn.Linear):
            raise TypeError(
                f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}."
                f"You should either use a different resize function or make sure that `old_embeddings` are an instance of {nn.Linear}."
            )

        # Build new lm head
        new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
        has_new_lm_head_bias = old_lm_head.bias is not None
        new_lm_head = nn.Linear(*new_lm_head_shape, bias=has_new_lm_head_bias).to(self.device)

        # initialize new lm head (in particular added tokens)
        self._init_weights(new_lm_head)

        num_tokens_to_copy = min(old_num_tokens, new_num_tokens)

        # Copy old lm head weights to new lm head
        if not transposed:
            new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
        else:
            new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]

        # Copy bias weights to new lm head
        if has_new_lm_head_bias:
            new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]

        return new_lm_head

767
    def init_weights(self):
768
769
770
        """
        Initializes and prunes weights if needed.
        """
771
772
773
774
775
776
777
        # Initialize weights
        self.apply(self._init_weights)

        # Prune heads if needed
        if self.config.pruned_heads:
            self.prune_heads(self.config.pruned_heads)

778
779
780
        # Tie weights if needed
        self.tie_weights()

781
782
783
    def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
        """
        Prunes heads of the base model.
784

785
786
        Arguments:
            heads_to_prune (:obj:`Dict[int, List[int]]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
787
788
789
                Dictionary with keys being selected layer indices (:obj:`int`) and associated values being the list of
                heads to prune in said layer (list of :obj:`int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads
                0 and 2 on layer 1 and heads 2 and 3 on layer 2.
thomwolf's avatar
thomwolf committed
790
        """
791
        # save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
792
        for layer, heads in heads_to_prune.items():
793
794
795
            union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
            self.config.pruned_heads[layer] = list(union_heads)  # Unfortunately we have to store it as list for JSON

796
        self.base_model._prune_heads(heads_to_prune)
thomwolf's avatar
thomwolf committed
797

798
799
800
801
802
803
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        save_config: bool = True,
        state_dict: Optional[dict] = None,
        save_function: Callable = torch.save,
Sylvain Gugger's avatar
Sylvain Gugger committed
804
805
        push_to_hub: bool = False,
        **kwargs,
806
    ):
807
808
809
        """
        Save a model and its configuration file to a directory, so that it can be re-loaded using the
        `:func:`~transformers.PreTrainedModel.from_pretrained`` class method.
810

811
        Arguments:
812
            save_directory (:obj:`str` or :obj:`os.PathLike`):
813
                Directory to which to save. Will be created if it doesn't exist.
814
815
816
817
818
819
820
821
822
823
824
            save_config (:obj:`bool`, `optional`, defaults to :obj:`True`):
                Whether or not to save the config of the model. Useful when in distributed training like TPUs and need
                to call this function on all processes. In this case, set :obj:`save_config=True` only on the main
                process to avoid race conditions.
            state_dict (nested dictionary of :obj:`torch.Tensor`):
                The state dictionary of the model to save. Will default to :obj:`self.state_dict()`, but can be used to
                only save parts of the model or if special precautions need to be taken when recovering the state
                dictionary of a model (like when using model parallelism).
            save_function (:obj:`Callable`):
                The function to use to save the state dictionary. Useful on distributed training like TPUs when one
                need to replace :obj:`torch.save` by another method.
Sylvain Gugger's avatar
Sylvain Gugger committed
825
826
827
828
829
            push_to_hub (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to push your model to the Hugging Face model hub after saving it.
            kwargs:
                Additional key word arguments passed along to the
                :meth:`~transformers.file_utils.PushToHubMixin.push_to_hub` method.
830
        """
831
        if os.path.isfile(save_directory):
832
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
833
834
            return
        os.makedirs(save_directory, exist_ok=True)
835

Julien Chaumond's avatar
Julien Chaumond committed
836
        # Only save the model itself if we are using distributed training
837
        model_to_save = unwrap_model(self)
838

Julien Chaumond's avatar
Julien Chaumond committed
839
840
841
        # Attach architecture to the config
        model_to_save.config.architectures = [model_to_save.__class__.__name__]

842
843
844
845
846
847
848
        # Save the config
        if save_config:
            model_to_save.config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            state_dict = model_to_save.state_dict()
849
850

        # Handle the case where some state_dict keys shouldn't be saved
851
852
        if self._keys_to_ignore_on_save is not None:
            state_dict = {k: v for k, v in state_dict.items() if k not in self._keys_to_ignore_on_save}
853

854
855
        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(save_directory, WEIGHTS_NAME)
856
        save_function(state_dict, output_model_file)
857

858
        logger.info(f"Model weights saved in {output_model_file}")
859

Sylvain Gugger's avatar
Sylvain Gugger committed
860
861
862
863
864
865
866
        if push_to_hub:
            saved_files = [output_model_file]
            if save_config:
                saved_files.append(os.path.join(save_directory, CONFIG_NAME))
            url = self._push_to_hub(save_files=saved_files, **kwargs)
            logger.info(f"Model pushed to the hub in this commit: {url}")

867
    @classmethod
868
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
869
870
        r"""
        Instantiate a pretrained pytorch model from a pre-trained model configuration.
871

Sylvain Gugger's avatar
Sylvain Gugger committed
872
873
        The model is set in evaluation mode by default using ``model.eval()`` (Dropout modules are deactivated). To
        train the model, you should first set it back in training mode with ``model.train()``.
874

875
876
877
        The warning `Weights from XXX not initialized from pretrained model` means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.
878

879
880
        The warning `Weights from XXX not used in YYY` means that the layer XXX is not used by YYY, therefore those
        weights are discarded.
881

882
        Parameters:
883
            pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`, `optional`):
884
885
                Can be either:

886
887
888
                    - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
                      a user or organization name, like ``dbmdz/bert-base-german-cased``.
889
890
                    - A path to a `directory` containing model weights saved using
                      :func:`~transformers.PreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
Sylvain Gugger's avatar
Sylvain Gugger committed
891
                    - A path or url to a `tensorflow index checkpoint file` (e.g, ``./tf_model/model.ckpt.index``). In
892
893
894
                      this case, ``from_tf`` should be set to :obj:`True` and a configuration object should be provided
                      as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in
                      a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
895
896
897
                    - A path or url to a model folder containing a `flax checkpoint file` in `.msgpack` format (e.g,
                      ``./flax_model/`` containing ``flax_model.msgpack``). In this case, ``from_flax`` should be set
                      to :obj:`True`.
898
899
900
901
                    - :obj:`None` if you are both providing the configuration and state dictionary (resp. with keyword
                      arguments ``config`` and ``state_dict``).
            model_args (sequence of positional arguments, `optional`):
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
902
            config (:obj:`Union[PretrainedConfig, str, os.PathLike]`, `optional`):
903
904
905
                Can be either:

                    - an instance of a class derived from :class:`~transformers.PretrainedConfig`,
906
                    - a string or path valid as input to :func:`~transformers.PretrainedConfig.from_pretrained`.
907
908
909
910

                Configuration for the model to use instead of an automatically loaded configuation. Configuration can
                be automatically loaded when:

911
912
                    - The model is a model provided by the library (loaded with the `model id` string of a pretrained
                      model).
913
                    - The model was saved using :func:`~transformers.PreTrainedModel.save_pretrained` and is reloaded
914
915
                      by supplying the save directory.
                    - The model is loaded by supplying a local directory as ``pretrained_model_name_or_path`` and a
916
917
918
919
920
921
922
923
                      configuration JSON file named `config.json` is found in the directory.
            state_dict (:obj:`Dict[str, torch.Tensor]`, `optional`):
                A state dictionary to use instead of a state dictionary loaded from saved weights file.

                This option can be used if you want to create a model from a pretrained configuration but load your own
                weights. In this case though, you should check if using
                :func:`~transformers.PreTrainedModel.save_pretrained` and
                :func:`~transformers.PreTrainedModel.from_pretrained` is not a simpler option.
924
            cache_dir (:obj:`Union[str, os.PathLike]`, `optional`):
925
926
927
928
929
                Path to a directory in which a downloaded pretrained model configuration should be cached if the
                standard cache should not be used.
            from_tf (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a TensorFlow checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
930
931
932
            from_flax (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Load the model weights from a Flax checkpoint save file (see docstring of
                ``pretrained_model_name_or_path`` argument).
933
934
935
936
937
938
            force_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (:obj:`bool`, `optional`, defaults to :obj:`False`):
                Whether or not to delete incompletely received files. Will attempt to resume the download if such a
                file exists.
Sylvain Gugger's avatar
Sylvain Gugger committed
939
            proxies (:obj:`Dict[str, str], `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
940
941
                A dictionary of proxy servers to use by protocol or endpoint, e.g., :obj:`{'http': 'foo.bar:3128',
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
942
            output_loading_info(:obj:`bool`, `optional`, defaults to :obj:`False`):
Sylvain Gugger's avatar
Sylvain Gugger committed
943
                Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
944
            local_files_only(:obj:`bool`, `optional`, defaults to :obj:`False`):
Stas Bekman's avatar
Stas Bekman committed
945
                Whether or not to only look at local files (i.e., do not try to download the model).
946
947
948
            use_auth_token (:obj:`str` or `bool`, `optional`):
                The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token
                generated when running :obj:`transformers-cli login` (stored in :obj:`~/.huggingface`).
Julien Chaumond's avatar
Julien Chaumond committed
949
950
951
952
            revision(:obj:`str`, `optional`, defaults to :obj:`"main"`):
                The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
                git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
                identifier allowed by git.
953
            mirror(:obj:`str`, `optional`, defaults to :obj:`None`):
Sylvain Gugger's avatar
Sylvain Gugger committed
954
955
956
                Mirror source to accelerate downloads in China. If you are from China and have an accessibility
                problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
                Please refer to the mirror site for more information.
957
958
            kwargs (remaining dictionary of keyword arguments, `optional`):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
959
                :obj:`output_attentions=True`). Behaves differently depending on whether a ``config`` is provided or
960
961
962
963
964
965
966
967
968
969
                automatically loaded:

                    - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the
                      underlying model's ``__init__`` method (we assume all relevant updates to the configuration have
                      already been done)
                    - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class
                      initialization function (:func:`~transformers.PretrainedConfig.from_pretrained`). Each key of
                      ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute
                      with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration
                      attribute will be passed to the underlying model's ``__init__`` function.
970

971
972
973
974
        .. note::

            Passing :obj:`use_auth_token=True` is required when you want to use a private model.

975
976
977
978
979
980
        .. note::

            Activate the special `"offline-mode"
            <https://huggingface.co/transformers/installation.html#offline-mode>`__ to use this method in a firewalled
            environment.

981
        Examples::
thomwolf's avatar
thomwolf committed
982

983
            >>> from transformers import BertConfig, BertModel
984
            >>> # Download model and configuration from huggingface.co and cache.
985
986
987
988
989
990
991
992
993
            >>> model = BertModel.from_pretrained('bert-base-uncased')
            >>> # Model was saved using `save_pretrained('./test/saved_model/')` (for example purposes, not runnable).
            >>> model = BertModel.from_pretrained('./test/saved_model/')
            >>> # Update configuration during loading.
            >>> model = BertModel.from_pretrained('bert-base-uncased', output_attentions=True)
            >>> assert model.config.output_attentions == True
            >>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
            >>> config = BertConfig.from_json_file('./tf_model/my_tf_model_config.json')
            >>> model = BertModel.from_pretrained('./tf_model/my_tf_checkpoint.ckpt.index', from_tf=True, config=config)
994
995
996
            >>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
            >>> model = BertModel.from_pretrained('bert-base-uncased', from_flax=True)

997
        """
998
999
1000
1001
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
1002
        from_flax = kwargs.pop("from_flax", False)
1003
1004
1005
1006
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        output_loading_info = kwargs.pop("output_loading_info", False)
1007
        local_files_only = kwargs.pop("local_files_only", False)
1008
        use_auth_token = kwargs.pop("use_auth_token", None)
Julien Chaumond's avatar
Julien Chaumond committed
1009
        revision = kwargs.pop("revision", None)
1010
        mirror = kwargs.pop("mirror", None)
1011
1012
1013
1014
1015
1016
        from_pipeline = kwargs.pop("_from_pipeline", None)
        from_auto_class = kwargs.pop("_from_auto", False)

        user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
        if from_pipeline is not None:
            user_agent["using_pipeline"] = from_pipeline
thomwolf's avatar
thomwolf committed
1017

1018
1019
1020
1021
        if is_offline_mode() and not local_files_only:
            logger.info("Offline mode: forcing local_files_only=True")
            local_files_only = True

1022
1023
1024
        # Load config if we don't provide a configuration
        if not isinstance(config, PretrainedConfig):
            config_path = config if config is not None else pretrained_model_name_or_path
1025
            config, model_kwargs = cls.config_class.from_pretrained(
1026
1027
1028
1029
                config_path,
                *model_args,
                cache_dir=cache_dir,
                return_unused_kwargs=True,
1030
                force_download=force_download,
1031
                resume_download=resume_download,
1032
                proxies=proxies,
1033
                local_files_only=local_files_only,
1034
                use_auth_token=use_auth_token,
Julien Chaumond's avatar
Julien Chaumond committed
1035
                revision=revision,
1036
1037
                _from_auto=from_auto_class,
                _from_pipeline=from_pipeline,
1038
                **kwargs,
1039
1040
1041
            )
        else:
            model_kwargs = kwargs
1042

thomwolf's avatar
thomwolf committed
1043
        # Load model
thomwolf's avatar
thomwolf committed
1044
        if pretrained_model_name_or_path is not None:
1045
            pretrained_model_name_or_path = str(pretrained_model_name_or_path)
1046
            if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
1047
                if from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")):
1048
                    # Load from a TF 1.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1049
                    archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME + ".index")
thomwolf's avatar
thomwolf committed
1050
                elif from_tf and os.path.isfile(os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)):
1051
                    # Load from a TF 2.0 checkpoint in priority if from_tf
thomwolf's avatar
thomwolf committed
1052
                    archive_file = os.path.join(pretrained_model_name_or_path, TF2_WEIGHTS_NAME)
1053
1054
1055
                elif from_flax and os.path.isfile(os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)):
                    # Load from a Flax checkpoint in priority if from_flax
                    archive_file = os.path.join(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1056
1057
                elif os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
thomwolf's avatar
thomwolf committed
1058
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
1059
                else:
1060
                    raise EnvironmentError(
1061
1062
                        f"Error no file named {[WEIGHTS_NAME, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME + '.index', FLAX_WEIGHTS_NAME]} found in "
                        f"directory {pretrained_model_name_or_path} or `from_tf` and `from_flax` set to False."
1063
                    )
1064
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
1065
                archive_file = pretrained_model_name_or_path
1066
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
1067
1068
1069
1070
1071
                if not from_tf:
                    raise ValueError(
                        f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
                        "from_tf to True to load from this checkpoint."
                    )
1072
                archive_file = pretrained_model_name_or_path + ".index"
1073
            else:
1074
1075
1076
1077
1078
1079
1080
1081
                # set correct filename
                if from_tf:
                    filename = TF2_WEIGHTS_NAME
                elif from_flax:
                    filename = FLAX_WEIGHTS_NAME
                else:
                    filename = WEIGHTS_NAME

thomwolf's avatar
thomwolf committed
1082
                archive_file = hf_bucket_url(
Julien Chaumond's avatar
Julien Chaumond committed
1083
                    pretrained_model_name_or_path,
1084
                    filename=filename,
Julien Chaumond's avatar
Julien Chaumond committed
1085
                    revision=revision,
1086
                    mirror=mirror,
thomwolf's avatar
thomwolf committed
1087
                )
1088

thomwolf's avatar
thomwolf committed
1089
            try:
1090
                # Load from URL or cache if already cached
1091
1092
1093
1094
1095
1096
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
1097
                    local_files_only=local_files_only,
1098
                    use_auth_token=use_auth_token,
1099
                    user_agent=user_agent,
1100
                )
Julien Chaumond's avatar
Julien Chaumond committed
1101
1102
            except EnvironmentError as err:
                logger.error(err)
1103
1104
1105
1106
1107
                msg = (
                    f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
                    f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
                    f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME}.\n\n"
                )
thomwolf's avatar
thomwolf committed
1108
1109
                raise EnvironmentError(msg)

thomwolf's avatar
thomwolf committed
1110
            if resolved_archive_file == archive_file:
1111
                logger.info(f"loading weights file {archive_file}")
1112
            else:
1113
                logger.info(f"loading weights file {archive_file} from cache at {resolved_archive_file}")
1114
        else:
thomwolf's avatar
thomwolf committed
1115
            resolved_archive_file = None
1116

1117
1118
        config.name_or_path = pretrained_model_name_or_path

1119
        # Instantiate model.
1120
1121
1122
1123
1124

        if is_deepspeed_zero3_enabled():
            import deepspeed

            logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
1125
1126
1127
1128
1129
            # this immediately partitions the model across all gpus, to avoid the overhead in time
            # and memory copying it on CPU or each GPU first

            # XXX: param_dict will be added in deepspeed==0.3.16 and probably replaced by deepspeed_config
            # with deepspeed.zero.Init(param_dict=deepspeed_config()):
1130
1131
1132
1133
            with deepspeed.zero.Init():
                model = cls(config, *model_args, **model_kwargs)
        else:
            model = cls(config, *model_args, **model_kwargs)
thomwolf's avatar
thomwolf committed
1134

1135
        if state_dict is None and not (from_tf or from_flax):
1136
            try:
1137
                state_dict = torch.load(resolved_archive_file, map_location="cpu")
1138
            except Exception:
1139
                raise OSError(
1140
1141
                    f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
                    f"at '{resolved_archive_file}'"
1142
1143
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )
1144

1145
1146
1147
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
1148
1149

        if from_tf:
1150
            if resolved_archive_file.endswith(".index"):
1151
1152
1153
1154
1155
                # Load from a TensorFlow 1.X checkpoint - provided by original authors
                model = cls.load_tf_weights(model, config, resolved_archive_file[:-6])  # Remove the '.index'
            else:
                # Load from our TensorFlow 2.0 checkpoints
                try:
1156
                    from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
1157

1158
                    model = load_tf2_checkpoint_in_pytorch_model(model, resolved_archive_file, allow_missing_keys=True)
1159
                except ImportError:
1160
1161
1162
1163
                    logger.error(
                        "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see "
                        "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions."
                    )
1164
                    raise
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
        elif from_flax:
            try:
                from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model

                model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
            except ImportError:
                logger.error(
                    "Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see "
                    "https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation instructions."
                )
                raise
1176
1177
1178
1179
1180
1181
        else:
            # Convert old format to new format if needed from a PyTorch state_dict
            old_keys = []
            new_keys = []
            for key in state_dict.keys():
                new_key = None
1182
1183
1184
1185
                if "gamma" in key:
                    new_key = key.replace("gamma", "weight")
                if "beta" in key:
                    new_key = key.replace("beta", "bias")
1186
1187
1188
1189
1190
1191
1192
                if new_key:
                    old_keys.append(key)
                    new_keys.append(new_key)
            for old_key, new_key in zip(old_keys, new_keys):
                state_dict[new_key] = state_dict.pop(old_key)

            # copy state_dict so _load_from_state_dict can modify it
1193
            metadata = getattr(state_dict, "_metadata", None)
1194
1195
1196
1197
            state_dict = state_dict.copy()
            if metadata is not None:
                state_dict._metadata = metadata

1198
1199
            # PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
            # so we need to apply the function recursively.
Julien Chaumond's avatar
Julien Chaumond committed
1200
            def load(module: nn.Module, prefix=""):
1201
                local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
                args = (state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
                if is_deepspeed_zero3_enabled():
                    import deepspeed

                    # because zero3 puts placeholders in model params, this context
                    # manager gathers (unpartitions) the params of the current layer, then loads from
                    # the state dict and then re-partitions them again
                    with deepspeed.zero.GatheredParameters(list(module.parameters(recurse=False)), modifier_rank=0):
                        if torch.distributed.get_rank() == 0:
                            module._load_from_state_dict(*args)
                else:
                    module._load_from_state_dict(*args)

1215
1216
                for name, child in module._modules.items():
                    if child is not None:
1217
                        load(child, prefix + name + ".")
1218
1219

            # Make sure we are able to load base models as well as derived models (with heads)
1220
            start_prefix = ""
1221
            model_to_load = model
1222
1223
            has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
            if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
1224
                start_prefix = cls.base_model_prefix + "."
1225
            if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
1226
1227
1228
                model_to_load = getattr(model, cls.base_model_prefix)

            load(model_to_load, prefix=start_prefix)
1229
1230
1231
1232
1233
1234
1235
1236

            if model.__class__.__name__ != model_to_load.__class__.__name__:
                base_model_state_dict = model_to_load.state_dict().keys()
                head_model_state_dict_without_base_prefix = [
                    key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
                ]
                missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)

1237
1238
            # Some models may have keys that are not in the state by design, removing them before needlessly warning
            # the user.
1239
1240
            if cls._keys_to_ignore_on_load_missing is not None:
                for pat in cls._keys_to_ignore_on_load_missing:
1241
1242
                    missing_keys = [k for k in missing_keys if re.search(pat, k) is None]

1243
1244
            if cls._keys_to_ignore_on_load_unexpected is not None:
                for pat in cls._keys_to_ignore_on_load_unexpected:
1245
1246
                    unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]

1247
1248
1249
1250
1251
            if len(unexpected_keys) > 0:
                logger.warning(
                    f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                    f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                    f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
1252
                    f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
1253
1254
1255
1256
1257
                    f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                    f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
                )
            else:
                logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
1258
            if len(missing_keys) > 0:
1259
1260
1261
1262
                logger.warning(
                    f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                    f"and are newly initialized: {missing_keys}\n"
                    f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
1263
                )
1264
            else:
1265
                logger.info(
1266
                    f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
Prajjwal Bhargava's avatar
Prajjwal Bhargava committed
1267
                    f"If your task is similar to the task the model of the checkpoint was trained on, "
1268
                    f"you can already use {model.__class__.__name__} for predictions without further training."
1269
                )
1270
            if len(error_msgs) > 0:
1271
1272
                error_msg = "\n\t".join(error_msgs)
                raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
1273
1274
        # make sure token embedding weights are still tied if needed
        model.tie_weights()
1275

1276
        # Set model in evaluation mode to deactivate DropOut modules by default
1277
1278
        model.eval()

thomwolf's avatar
thomwolf committed
1279
        if output_loading_info:
1280
1281
1282
1283
1284
            loading_info = {
                "missing_keys": missing_keys,
                "unexpected_keys": unexpected_keys,
                "error_msgs": error_msgs,
            }
thomwolf's avatar
thomwolf committed
1285
1286
            return model, loading_info

1287
1288
        return model

thomwolf's avatar
thomwolf committed
1289

thomwolf's avatar
thomwolf committed
1290
class Conv1D(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    """
    1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).

    Basically works like a linear layer but the weights are transposed.

    Args:
        nf (:obj:`int`): The number of output features.
        nx (:obj:`int`): The number of input features.
    """

thomwolf's avatar
thomwolf committed
1301
    def __init__(self, nf, nx):
Julien Chaumond's avatar
Julien Chaumond committed
1302
        super().__init__()
thomwolf's avatar
thomwolf committed
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
        self.nf = nf
        w = torch.empty(nx, nf)
        nn.init.normal_(w, std=0.02)
        self.weight = nn.Parameter(w)
        self.bias = nn.Parameter(torch.zeros(nf))

    def forward(self, x):
        size_out = x.size()[:-1] + (self.nf,)
        x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
        x = x.view(*size_out)
        return x


thomwolf's avatar
thomwolf committed
1316
class PoolerStartLogits(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1317
1318
    """
    Compute SQuAD start logits from sequence hidden states.
1319

Sylvain Gugger's avatar
Sylvain Gugger committed
1320
1321
1322
1323
1324
1325
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1326
        super().__init__()
thomwolf's avatar
thomwolf committed
1327
1328
        self.dense = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1329
1330
1331
1332
1333
1334
1335
1336
    def forward(
        self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1337
1338
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1339
1340
1341

        Returns:
            :obj:`torch.FloatTensor`: The start logits for SQuAD.
thomwolf's avatar
thomwolf committed
1342
        """
thomwolf's avatar
thomwolf committed
1343
1344
1345
        x = self.dense(hidden_states).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1346
            if get_parameter_dtype(self) == torch.float16:
1347
1348
1349
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1350
1351
1352
1353
1354
1355

        return x


class PoolerEndLogits(nn.Module):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1356
    Compute SQuAD end logits from sequence hidden states.
1357

Sylvain Gugger's avatar
Sylvain Gugger committed
1358
1359
1360
1361
1362
1363
1364
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
    """

    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1365
        super().__init__()
thomwolf's avatar
thomwolf committed
1366
1367
1368
1369
1370
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dense_1 = nn.Linear(config.hidden_size, 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1387
1388
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Sylvain Gugger's avatar
Sylvain Gugger committed
1389
1390
1391
1392
1393
1394
1395
1396

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The end logits for SQuAD.
thomwolf's avatar
thomwolf committed
1397
        """
1398
1399
1400
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1401
        if start_positions is not None:
1402
            slen, hsz = hidden_states.shape[-2:]
1403
1404
1405
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions)  # shape (bsz, 1, hsz)
            start_states = start_states.expand(-1, slen, -1)  # shape (bsz, slen, hsz)
thomwolf's avatar
thomwolf committed
1406
1407
1408
1409
1410
1411
1412

        x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
        x = self.activation(x)
        x = self.LayerNorm(x)
        x = self.dense_1(x).squeeze(-1)

        if p_mask is not None:
Lysandre Debut's avatar
Lysandre Debut committed
1413
            if get_parameter_dtype(self) == torch.float16:
1414
1415
1416
                x = x * (1 - p_mask) - 65500 * p_mask
            else:
                x = x * (1 - p_mask) - 1e30 * p_mask
thomwolf's avatar
thomwolf committed
1417
1418
1419
1420
1421

        return x


class PoolerAnswerClass(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1422
1423
1424
1425
1426
1427
1428
    """
    Compute SQuAD 2.0 answer class from classification and start tokens hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model.
    """
1429

thomwolf's avatar
thomwolf committed
1430
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1431
        super().__init__()
thomwolf's avatar
thomwolf committed
1432
1433
1434
1435
        self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
        self.activation = nn.Tanh()
        self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)

Sylvain Gugger's avatar
Sylvain Gugger committed
1436
1437
1438
1439
1440
1441
1442
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        start_states: Optional[torch.FloatTensor] = None,
        start_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
1443
1444
        """
        Args:
Sylvain Gugger's avatar
Sylvain Gugger committed
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                The final hidden states of the model.
            start_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`, `optional`):
                The hidden states of the first tokens for the labeled span.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                The position of the first token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.

        .. note::

            One of ``start_states`` or ``start_positions`` should be not obj:`None`. If both are set,
            ``start_positions`` overrides ``start_states``.

        Returns:
            :obj:`torch.FloatTensor`: The SQuAD 2.0 answer class.
thomwolf's avatar
thomwolf committed
1461
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1462
        # No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
1463
        hsz = hidden_states.shape[-1]
1464
1465
1466
        assert (
            start_states is not None or start_positions is not None
        ), "One of start_states, start_positions should be not None"
thomwolf's avatar
thomwolf committed
1467
        if start_positions is not None:
1468
1469
            start_positions = start_positions[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            start_states = hidden_states.gather(-2, start_positions).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1470
1471

        if cls_index is not None:
1472
1473
            cls_index = cls_index[:, None, None].expand(-1, -1, hsz)  # shape (bsz, 1, hsz)
            cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1474
        else:
1475
            cls_token_state = hidden_states[:, -1, :]  # shape (bsz, hsz)
thomwolf's avatar
thomwolf committed
1476
1477
1478
1479
1480
1481
1482
1483

        x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
        x = self.activation(x)
        x = self.dense_1(x).squeeze(-1)

        return x


1484
1485
1486
@dataclass
class SquadHeadOutput(ModelOutput):
    """
Sylvain Gugger's avatar
Sylvain Gugger committed
1487
    Base class for outputs of question answering models using a :class:`~transformers.modeling_utils.SQuADHead`.
1488
1489
1490

    Args:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned if both :obj:`start_positions` and :obj:`end_positions` are provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
1491
1492
            Classification loss as the sum of start token, end token (and is_impossible if provided) classification
            losses.
1493
1494
1495
1496
1497
        start_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the top config.start_n_top start token possibilities (beam-search).
        start_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top config.start_n_top start token possibilities (beam-search).
        end_top_log_probs (``torch.FloatTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
Sylvain Gugger's avatar
Sylvain Gugger committed
1498
1499
            Log probabilities for the top ``config.start_n_top * config.end_n_top`` end token possibilities
            (beam-search).
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
        end_top_index (``torch.LongTensor`` of shape ``(batch_size, config.start_n_top * config.end_n_top)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Indices for the top ``config.start_n_top * config.end_n_top`` end token possibilities (beam-search).
        cls_logits (``torch.FloatTensor`` of shape ``(batch_size,)``, `optional`, returned if ``start_positions`` or ``end_positions`` is not provided):
            Log probabilities for the ``is_impossible`` label of the answers.

    """

    loss: Optional[torch.FloatTensor] = None
    start_top_log_probs: Optional[torch.FloatTensor] = None
    start_top_index: Optional[torch.LongTensor] = None
    end_top_log_probs: Optional[torch.FloatTensor] = None
    end_top_index: Optional[torch.LongTensor] = None
    cls_logits: Optional[torch.FloatTensor] = None


thomwolf's avatar
thomwolf committed
1515
class SQuADHead(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1516
1517
    r"""
    A SQuAD head inspired by XLNet.
1518

Sylvain Gugger's avatar
Sylvain Gugger committed
1519
1520
1521
1522
    Args:
        config (:class:`~transformers.PretrainedConfig`):
            The config used by the model, will be used to grab the :obj:`hidden_size` of the model and the
            :obj:`layer_norm_eps` to use.
thomwolf's avatar
thomwolf committed
1523
    """
1524

thomwolf's avatar
thomwolf committed
1525
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1526
        super().__init__()
thomwolf's avatar
thomwolf committed
1527
1528
1529
1530
1531
1532
1533
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top

        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)

Sylvain Gugger's avatar
Sylvain Gugger committed
1534
    @replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
1535
    def forward(
1536
        self,
Sylvain Gugger's avatar
Sylvain Gugger committed
1537
1538
1539
1540
1541
1542
        hidden_states: torch.FloatTensor,
        start_positions: Optional[torch.LongTensor] = None,
        end_positions: Optional[torch.LongTensor] = None,
        cls_index: Optional[torch.LongTensor] = None,
        is_impossible: Optional[torch.LongTensor] = None,
        p_mask: Optional[torch.FloatTensor] = None,
1543
        return_dict: bool = False,
Sylvain Gugger's avatar
Sylvain Gugger committed
1544
1545
    ) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
        """
Lysandre's avatar
Lysandre committed
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len, hidden_size)`):
                Final hidden states of the model on the sequence tokens.
            start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the first token for the labeled span.
            end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Positions of the last token for the labeled span.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Position of the CLS token for each sentence in the batch. If :obj:`None`, takes the last token.
            is_impossible (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
                Whether the question has a possible answer in the paragraph or not.
            p_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, seq_len)`, `optional`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1558
1559
                Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
                should be masked.
Lysandre's avatar
Lysandre committed
1560
            return_dict (:obj:`bool`, `optional`, defaults to :obj:`False`):
1561
                Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
Sylvain Gugger's avatar
Sylvain Gugger committed
1562

Lysandre's avatar
Lysandre committed
1563
        Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1564
        """
thomwolf's avatar
thomwolf committed
1565
        start_logits = self.start_logits(hidden_states, p_mask=p_mask)
thomwolf's avatar
thomwolf committed
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)

            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)

            loss_fct = CrossEntropyLoss()
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
1589

1590
            return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
thomwolf's avatar
thomwolf committed
1591
1592
1593
1594

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
            start_log_probs = F.softmax(start_logits, dim=-1)  # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(
                start_log_probs, self.start_n_top, dim=-1
            )  # shape (bsz, start_n_top)
            start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz)  # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index_exp)  # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1)  # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
                start_states
            )  # shape (bsz, slen, start_n_top, hsz)
thomwolf's avatar
thomwolf committed
1607
1608
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
1609
            end_log_probs = F.softmax(end_logits, dim=1)  # shape (bsz, slen, start_n_top)
thomwolf's avatar
thomwolf committed
1610

1611
1612
1613
            end_top_log_probs, end_top_index = torch.topk(
                end_log_probs, self.end_n_top, dim=1
            )  # shape (bsz, end_n_top, start_n_top)
thomwolf's avatar
thomwolf committed
1614
1615
1616
1617
1618
1619
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

1620
            if not return_dict:
1621
1622
1623
1624
1625
1626
1627
1628
1629
                return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
            else:
                return SquadHeadOutput(
                    start_top_log_probs=start_top_log_probs,
                    start_top_index=start_top_index,
                    end_top_log_probs=end_top_log_probs,
                    end_top_index=end_top_index,
                    cls_logits=cls_logits,
                )
thomwolf's avatar
thomwolf committed
1630
1631
1632


class SequenceSummary(nn.Module):
Sylvain Gugger's avatar
Sylvain Gugger committed
1633
1634
1635
1636
1637
    r"""
    Compute a single vector summary of a sequence hidden states.

    Args:
        config (:class:`~transformers.PretrainedConfig`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1638
1639
            The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
            config class of your model for the default values it uses):
Sylvain Gugger's avatar
Sylvain Gugger committed
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651

            - **summary_type** (:obj:`str`) -- The method to use to make this summary. Accepted values are:

                - :obj:`"last"` -- Take the last token hidden state (like XLNet)
                - :obj:`"first"` -- Take the first token hidden state (like Bert)
                - :obj:`"mean"` -- Take the mean of all tokens hidden states
                - :obj:`"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
                - :obj:`"attn"` -- Not implemented now, use multi-head attention

            - **summary_use_proj** (:obj:`bool`) -- Add a projection after the vector extraction.
            - **summary_proj_to_labels** (:obj:`bool`) -- If :obj:`True`, the projection outputs to
              :obj:`config.num_labels` classes (otherwise to :obj:`config.hidden_size`).
Sylvain Gugger's avatar
Sylvain Gugger committed
1652
            - **summary_activation** (:obj:`Optional[str]`) -- Set to :obj:`"tanh"` to add a tanh activation to the
Sylvain Gugger's avatar
Sylvain Gugger committed
1653
1654
1655
1656
1657
              output, another string or :obj:`None` will add no activation.
            - **summary_first_dropout** (:obj:`float`) -- Optional dropout probability before the projection and
              activation.
            - **summary_last_dropout** (:obj:`float`)-- Optional dropout probability after the projection and
              activation.
thomwolf's avatar
thomwolf committed
1658
    """
1659

1660
    def __init__(self, config: PretrainedConfig):
Julien Chaumond's avatar
Julien Chaumond committed
1661
        super().__init__()
thomwolf's avatar
thomwolf committed
1662

1663
        self.summary_type = getattr(config, "summary_type", "last")
1664
        if self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1665
1666
1667
1668
1669
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError

thomwolf's avatar
thomwolf committed
1670
        self.summary = Identity()
1671
1672
        if hasattr(config, "summary_use_proj") and config.summary_use_proj:
            if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
1673
                num_classes = config.num_labels
thomwolf's avatar
thomwolf committed
1674
1675
1676
1677
            else:
                num_classes = config.hidden_size
            self.summary = nn.Linear(config.hidden_size, num_classes)

1678
        activation_string = getattr(config, "summary_activation", None)
Lysandre's avatar
Lysandre committed
1679
        self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
thomwolf's avatar
thomwolf committed
1680

thomwolf's avatar
thomwolf committed
1681
        self.first_dropout = Identity()
1682
        if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
1683
1684
            self.first_dropout = nn.Dropout(config.summary_first_dropout)

thomwolf's avatar
thomwolf committed
1685
        self.last_dropout = Identity()
1686
        if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
1687
            self.last_dropout = nn.Dropout(config.summary_last_dropout)
thomwolf's avatar
thomwolf committed
1688

Sylvain Gugger's avatar
Sylvain Gugger committed
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
    def forward(
        self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
    ) -> torch.FloatTensor:
        """
        Compute a single vector summary of a sequence hidden states.

        Args:
            hidden_states (:obj:`torch.FloatTensor` of shape :obj:`[batch_size, seq_len, hidden_size]`):
                The hidden states of the last layer.
            cls_index (:obj:`torch.LongTensor` of shape :obj:`[batch_size]` or :obj:`[batch_size, ...]` where ... are optional leading dimensions of :obj:`hidden_states`, `optional`):
                Used if :obj:`summary_type == "cls_index"` and takes the last token of the sequence as classification
                token.

        Returns:
            :obj:`torch.FloatTensor`: The summary of the sequence hidden states.
thomwolf's avatar
thomwolf committed
1704
        """
1705
        if self.summary_type == "last":
thomwolf's avatar
thomwolf committed
1706
            output = hidden_states[:, -1]
1707
        elif self.summary_type == "first":
thomwolf's avatar
thomwolf committed
1708
            output = hidden_states[:, 0]
1709
        elif self.summary_type == "mean":
thomwolf's avatar
thomwolf committed
1710
            output = hidden_states.mean(dim=1)
1711
        elif self.summary_type == "cls_index":
thomwolf's avatar
thomwolf committed
1712
            if cls_index is None:
Lysandre's avatar
Lysandre committed
1713
1714
1715
1716
1717
                cls_index = torch.full_like(
                    hidden_states[..., :1, :],
                    hidden_states.shape[-2] - 1,
                    dtype=torch.long,
                )
thomwolf's avatar
thomwolf committed
1718
            else:
thomwolf's avatar
thomwolf committed
1719
                cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
1720
                cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
thomwolf's avatar
thomwolf committed
1721
            # shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
1722
1723
            output = hidden_states.gather(-2, cls_index).squeeze(-2)  # shape (bsz, XX, hidden_size)
        elif self.summary_type == "attn":
thomwolf's avatar
thomwolf committed
1724
1725
            raise NotImplementedError

1726
        output = self.first_dropout(output)
thomwolf's avatar
thomwolf committed
1727
1728
        output = self.summary(output)
        output = self.activation(output)
1729
        output = self.last_dropout(output)
thomwolf's avatar
thomwolf committed
1730
1731
1732
1733

        return output


1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
def unwrap_model(model: torch.nn.Module) -> torch.nn.Module:
    """
    Recursively unwraps a model from potential containers (as used in distributed training).

    Args:
        model (:obj:`torch.nn.Module`): The model to unwrap.
    """
    # since there could be multiple levels of wrapping, unwrap recursively
    if hasattr(model, "module"):
        return unwrap_model(model.module)
    else:
        return model


Sylvain Gugger's avatar
Sylvain Gugger committed
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
def prune_linear_layer(layer: torch.nn.Linear, index: torch.LongTensor, dim: int = 0) -> torch.nn.Linear:
    """
    Prune a linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`torch.nn.Linear`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 0): The dimension on which to keep the indices.

    Returns:
        :obj:`torch.nn.Linear`: The pruned layer as a new layer with :obj:`requires_grad=True`.
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if layer.bias is not None:
        if dim == 1:
            b = layer.bias.clone().detach()
        else:
            b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    if layer.bias is not None:
        new_layer.bias.requires_grad = False
        new_layer.bias.copy_(b.contiguous())
        new_layer.bias.requires_grad = True
    return new_layer


Sylvain Gugger's avatar
Sylvain Gugger committed
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
def prune_conv1d_layer(layer: Conv1D, index: torch.LongTensor, dim: int = 1) -> Conv1D:
    """
    Prune a Conv1D layer to keep only entries in index. A Conv1D work as a Linear layer (see e.g. BERT) but the weights
    are transposed.

    Used to remove heads.

    Args:
        layer (:class:`~transformers.modeling_utils.Conv1D`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`, defaults to 1): The dimension on which to keep the indices.

    Returns:
        :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with :obj:`requires_grad=True`.
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
    """
    index = index.to(layer.weight.device)
    W = layer.weight.index_select(dim, index).clone().detach()
    if dim == 0:
        b = layer.bias.clone().detach()
    else:
        b = layer.bias[index].clone().detach()
    new_size = list(layer.weight.size())
    new_size[dim] = len(index)
    new_layer = Conv1D(new_size[1], new_size[0]).to(layer.weight.device)
    new_layer.weight.requires_grad = False
    new_layer.weight.copy_(W.contiguous())
    new_layer.weight.requires_grad = True
    new_layer.bias.requires_grad = False
    new_layer.bias.copy_(b.contiguous())
    new_layer.bias.requires_grad = True
    return new_layer
1813
1814


Sylvain Gugger's avatar
Sylvain Gugger committed
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
def prune_layer(
    layer: Union[torch.nn.Linear, Conv1D], index: torch.LongTensor, dim: Optional[int] = None
) -> Union[torch.nn.Linear, Conv1D]:
    """
    Prune a Conv1D or linear layer to keep only entries in index.

    Used to remove heads.

    Args:
        layer (:obj:`Union[torch.nn.Linear, Conv1D]`): The layer to prune.
        index (:obj:`torch.LongTensor`): The indices to keep in the layer.
        dim (:obj:`int`, `optional`): The dimension on which to keep the indices.

    Returns:
Sylvain Gugger's avatar
Sylvain Gugger committed
1829
1830
        :obj:`torch.nn.Linear` or :class:`~transformers.modeling_utils.Conv1D`: The pruned layer as a new layer with
        :obj:`requires_grad=True`.
1831
1832
1833
1834
1835
1836
    """
    if isinstance(layer, nn.Linear):
        return prune_linear_layer(layer, index, dim=0 if dim is None else dim)
    elif isinstance(layer, Conv1D):
        return prune_conv1d_layer(layer, index, dim=1 if dim is None else dim)
    else:
1837
        raise ValueError(f"Can't prune layer of class {layer.__class__}")
Patrick von Platen's avatar
Patrick von Platen committed
1838
1839
1840


def apply_chunking_to_forward(
1841
    forward_fn: Callable[..., torch.Tensor], chunk_size: int, chunk_dim: int, *input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
1842
1843
) -> torch.Tensor:
    """
1844
1845
1846
1847
1848
    This function chunks the :obj:`input_tensors` into smaller input tensor parts of size :obj:`chunk_size` over the
    dimension :obj:`chunk_dim`. It then applies a layer :obj:`forward_fn` to each chunk independently to save memory.

    If the :obj:`forward_fn` is independent across the :obj:`chunk_dim` this function will yield the same result as
    directly applying :obj:`forward_fn` to :obj:`input_tensors`.
Patrick von Platen's avatar
Patrick von Platen committed
1849
1850

    Args:
1851
1852
        forward_fn (:obj:`Callable[..., torch.Tensor]`):
            The forward function of the model.
1853
1854
1855
1856
1857
        chunk_size (:obj:`int`):
            The chunk size of a chunked tensor: :obj:`num_chunks = len(input_tensors[0]) / chunk_size`.
        chunk_dim (:obj:`int`):
            The dimension over which the :obj:`input_tensors` should be chunked.
        input_tensors (:obj:`Tuple[torch.Tensor]`):
Sylvain Gugger's avatar
Sylvain Gugger committed
1858
1859
            The input tensors of ``forward_fn`` which will be chunked

Patrick von Platen's avatar
Patrick von Platen committed
1860
    Returns:
1861
        :obj:`torch.Tensor`: A tensor with the same shape as the :obj:`forward_fn` would have given if applied`.
Patrick von Platen's avatar
Patrick von Platen committed
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872


    Examples::

        # rename the usual forward() fn to forward_chunk()
        def forward_chunk(self, hidden_states):
            hidden_states = self.decoder(hidden_states)
            return hidden_states

        # implement a chunked forward function
        def forward(self, hidden_states):
1873
            return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states)
Patrick von Platen's avatar
Patrick von Platen committed
1874
1875
    """

1876
    assert len(input_tensors) > 0, f"{input_tensors} has to be a tuple/list of tensors"
1877
    tensor_shape = input_tensors[0].shape[chunk_dim]
Patrick von Platen's avatar
Patrick von Platen committed
1878
    assert all(
1879
        input_tensor.shape[chunk_dim] == tensor_shape for input_tensor in input_tensors
Patrick von Platen's avatar
Patrick von Platen committed
1880
1881
    ), "All input tenors have to be of the same shape"

1882
    # inspect.signature exist since python 3.5 and is a python method -> no problem with backward compatibility
Patrick von Platen's avatar
Patrick von Platen committed
1883
    num_args_in_forward_chunk_fn = len(inspect.signature(forward_fn).parameters)
1884
1885
1886
1887
1888
    if num_args_in_forward_chunk_fn != len(input_tensors):
        raise ValueError(
            f"forward_chunk_fn expects {num_args_in_forward_chunk_fn} arguments, but only {len(input_tensors)} input "
            "tensors are given"
        )
Patrick von Platen's avatar
Patrick von Platen committed
1889
1890

    if chunk_size > 0:
1891
1892
1893
1894
1895
        if input_tensors[0].shape[chunk_dim] % chunk_size != 0:
            raise ValueError(
                f"The dimension to be chunked {input_tensors[0].shape[chunk_dim]} has to be a multiple of the chunk "
                f"size {chunk_size}"
            )
Patrick von Platen's avatar
Patrick von Platen committed
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906

        num_chunks = input_tensors[0].shape[chunk_dim] // chunk_size

        # chunk input tensor into tuples
        input_tensors_chunks = tuple(input_tensor.chunk(num_chunks, dim=chunk_dim) for input_tensor in input_tensors)
        # apply forward fn to every tuple
        output_chunks = tuple(forward_fn(*input_tensors_chunk) for input_tensors_chunk in zip(*input_tensors_chunks))
        # concatenate output at same dimension
        return torch.cat(output_chunks, dim=chunk_dim)

    return forward_fn(*input_tensors)