run_semantic_segmentation.py 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

import json
import logging
import os
import sys
20
import warnings
21
from dataclasses import dataclass, field
22
from functools import partial
23
24
from typing import Optional

25
import albumentations as A
26
import evaluate
27
28
import numpy as np
import torch
29
from albumentations.pytorch import ToTensorV2
30
from datasets import load_dataset
31
from huggingface_hub import hf_hub_download
32
33
34
35
36
from torch import nn

import transformers
from transformers import (
    AutoConfig,
37
    AutoImageProcessor,
38
39
40
41
42
43
44
    AutoModelForSemanticSegmentation,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
)
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version, send_example_telemetry
46
47
48
49
50
51
52
53
from transformers.utils.versions import require_version


""" Finetuning any 馃 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API."""

logger = logging.getLogger(__name__)

# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Arthur Zucker's avatar
Arthur Zucker committed
54
check_min_version("4.45.0.dev0")
55
56
57
58

require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")


59
60
def reduce_labels_transform(labels: np.ndarray, **kwargs) -> np.ndarray:
    """Set `0` label as with value 255 and then reduce all other labels by 1.
61

62
63
64
    Example:
        Initial class labels:         0 - background; 1 - road; 2 - car;
        Transformed class labels:   255 - background; 0 - road; 1 - car;
65

66
67
68
69
70
71
    **kwargs are required to use this function with albumentations.
    """
    labels[labels == 0] = 255
    labels = labels - 1
    labels[labels == 254] = 255
    return labels
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
    them on the command line.
    """

    dataset_name: Optional[str] = field(
        default="segments/sidewalk-semantic",
        metadata={
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
        },
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_val_split: Optional[float] = field(
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
101
102
103
104
105
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107
108
109
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
110
111
        },
    )
112
113
114
115
    do_reduce_labels: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
    )
116
117
118
119
120
121
122
123
124
125
    reduce_labels: Optional[bool] = field(
        default=False,
        metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
    )

    def __post_init__(self):
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
            raise ValueError(
                "You must specify either a dataset name from the hub or a train and/or validation directory."
            )
126
127
128
129
130
131
        if self.reduce_labels:
            self.do_reduce_labels = self.reduce_labels
            warnings.warn(
                "The `reduce_labels` argument is deprecated and will be removed in v4.45. Please use `do_reduce_labels` instead.",
                FutureWarning,
            )
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        default="nvidia/mit-b0",
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
154
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
155
156
    token: str = field(
        default=None,
157
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
158
            "help": (
159
160
                "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
                "generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
Sylvain Gugger's avatar
Sylvain Gugger committed
161
            )
162
163
        },
    )
164
165
166
167
    trust_remote_code: bool = field(
        default=False,
        metadata={
            "help": (
168
169
170
                "Whether to trust the execution of code from datasets/models defined on the Hub."
                " This option should only be set to `True` for repositories you trust and in which you have read the"
                " code, as it will execute code present on the Hub on your local machine."
171
172
173
            )
        },
    )
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

189
190
191
192
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_semantic_segmentation", model_args, data_args)

193
194
195
196
197
198
199
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

200
201
202
203
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

204
205
206
207
208
209
210
211
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
212
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
213
        + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Load dataset
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # TODO support datasets from local folders
236
237
238
    dataset = load_dataset(
        data_args.dataset_name, cache_dir=model_args.cache_dir, trust_remote_code=model_args.trust_remote_code
    )
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

    # Rename column names to standardized names (only "image" and "label" need to be present)
    if "pixel_values" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"pixel_values": "image"})
    if "annotation" in dataset["train"].column_names:
        dataset = dataset.rename_columns({"annotation": "label"})

    # If we don't have a validation split, split off a percentage of train as validation.
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
        split = dataset["train"].train_test_split(data_args.train_val_split)
        dataset["train"] = split["train"]
        dataset["validation"] = split["test"]

    # Prepare label mappings.
    # We'll include these in the model's config to get human readable labels in the Inference API.
    if data_args.dataset_name == "scene_parse_150":
256
        repo_id = "huggingface/label-files"
257
258
        filename = "ade20k-id2label.json"
    else:
259
        repo_id = data_args.dataset_name
260
        filename = "id2label.json"
261
    id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
262
263
264
    id2label = {int(k): v for k, v in id2label.items()}
    label2id = {v: str(k) for k, v in id2label.items()}

265
    # Load the mean IoU metric from the evaluate package
266
    metric = evaluate.load("mean_iou", cache_dir=model_args.cache_dir)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    @torch.no_grad()
    def compute_metrics(eval_pred):
        logits, labels = eval_pred
        logits_tensor = torch.from_numpy(logits)
        # scale the logits to the size of the label
        logits_tensor = nn.functional.interpolate(
            logits_tensor,
            size=labels.shape[-2:],
            mode="bilinear",
            align_corners=False,
        ).argmax(dim=1)

        pred_labels = logits_tensor.detach().cpu().numpy()
        metrics = metric.compute(
            predictions=pred_labels,
            references=labels,
            num_labels=len(id2label),
            ignore_index=0,
288
            reduce_labels=image_processor.do_reduce_labels,
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        )
        # add per category metrics as individual key-value pairs
        per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
        per_category_iou = metrics.pop("per_category_iou").tolist()

        metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
        metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})

        return metrics

    config = AutoConfig.from_pretrained(
        model_args.config_name or model_args.model_name_or_path,
        label2id=label2id,
        id2label=id2label,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
305
        token=model_args.token,
306
        trust_remote_code=model_args.trust_remote_code,
307
308
309
310
311
312
313
    )
    model = AutoModelForSemanticSegmentation.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
314
        token=model_args.token,
315
        trust_remote_code=model_args.trust_remote_code,
316
    )
317
318
    image_processor = AutoImageProcessor.from_pretrained(
        model_args.image_processor_name or model_args.model_name_or_path,
319
        do_reduce_labels=data_args.do_reduce_labels,
320
321
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
322
        token=model_args.token,
323
        trust_remote_code=model_args.trust_remote_code,
324
325
    )

326
    # Define transforms to be applied to each image and target.
327
    if "shortest_edge" in image_processor.size:
amyeroberts's avatar
amyeroberts committed
328
        # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
329
        height, width = image_processor.size["shortest_edge"], image_processor.size["shortest_edge"]
amyeroberts's avatar
amyeroberts committed
330
    else:
331
332
        height, width = image_processor.size["height"], image_processor.size["width"]
    train_transforms = A.Compose(
333
        [
334
335
            A.Lambda(
                name="reduce_labels",
336
                mask=reduce_labels_transform if data_args.do_reduce_labels else None,
337
338
339
340
341
342
343
344
                p=1.0,
            ),
            # pad image with 255, because it is ignored by loss
            A.PadIfNeeded(min_height=height, min_width=width, border_mode=0, value=255, p=1.0),
            A.RandomCrop(height=height, width=width, p=1.0),
            A.HorizontalFlip(p=0.5),
            A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std, max_pixel_value=255.0, p=1.0),
            ToTensorV2(),
345
346
        ]
    )
347
    val_transforms = A.Compose(
348
        [
349
350
            A.Lambda(
                name="reduce_labels",
351
                mask=reduce_labels_transform if data_args.do_reduce_labels else None,
352
353
354
355
356
                p=1.0,
            ),
            A.Resize(height=height, width=width, p=1.0),
            A.Normalize(mean=image_processor.image_mean, std=image_processor.image_std, max_pixel_value=255.0, p=1.0),
            ToTensorV2(),
357
358
359
        ]
    )

360
    def preprocess_batch(example_batch, transforms: A.Compose):
361
362
363
        pixel_values = []
        labels = []
        for image, target in zip(example_batch["image"], example_batch["label"]):
364
365
366
            transformed = transforms(image=np.array(image.convert("RGB")), mask=np.array(target))
            pixel_values.append(transformed["image"])
            labels.append(transformed["mask"])
367

368
        encoding = {}
369
370
        encoding["pixel_values"] = torch.stack(pixel_values).to(torch.float)
        encoding["labels"] = torch.stack(labels).to(torch.long)
371
372
373

        return encoding

374
375
376
377
    # Preprocess function for dataset should have only one argument,
    # so we use partial to pass the transforms
    preprocess_train_batch_fn = partial(preprocess_batch, transforms=train_transforms)
    preprocess_val_batch_fn = partial(preprocess_batch, transforms=val_transforms)
378
379
380
381
382
383
384
385
386

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        if data_args.max_train_samples is not None:
            dataset["train"] = (
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
            )
        # Set the training transforms
387
        dataset["train"].set_transform(preprocess_train_batch_fn)
388
389
390
391
392
393
394
395
396

    if training_args.do_eval:
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        if data_args.max_eval_samples is not None:
            dataset["validation"] = (
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
            )
        # Set the validation transforms
397
        dataset["validation"].set_transform(preprocess_val_batch_fn)
398

399
    # Initialize our trainer
400
401
402
403
404
405
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=dataset["train"] if training_args.do_train else None,
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
        compute_metrics=compute_metrics,
NielsRogge's avatar
NielsRogge committed
406
        tokenizer=image_processor,
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        data_collator=default_data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()
        trainer.log_metrics("train", train_result.metrics)
        trainer.save_metrics("train", train_result.metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        metrics = trainer.evaluate()
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Write model card and (optionally) push to hub
    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "dataset": data_args.dataset_name,
        "tags": ["image-segmentation", "vision"],
    }
    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


if __name__ == "__main__":
    main()