optimization.py 10.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""

17
18
19
import math
import torch
from torch.optim import Optimizer
Li Li's avatar
Li Li committed
20
from torch.optim.optimizer import required
21
from torch.nn.utils import clip_grad_norm_
lukovnikov's avatar
lukovnikov committed
22
23
24
import logging

logger = logging.getLogger(__name__)
25

lukovnikov's avatar
lukovnikov committed
26

lukovnikov's avatar
lukovnikov committed
27
28
__all__ = ["LRSchedule", "WarmupLinearSchedule", "WarmupConstantSchedule", "WarmupCosineSchedule", "BertAdam",
           "WarmupMultiCosineSchedule", "WarmupCosineWithRestartsSchedule"]
lukovnikov's avatar
lukovnikov committed
29
30


lukovnikov's avatar
lukovnikov committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
class LRSchedule(object):
    warn_t_total = False
    def __init__(self, warmup=0.002, t_total=-1, **kw):
        super(LRSchedule, self).__init__(**kw)
        self.warmup, self.t_total = warmup, t_total
        if t_total <= 0:
            logger.warning("t_total value of {} results in schedule not being applied".format(t_total))
        if not 0.0 <= warmup < 1.0 and not warmup == -1:
            raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
        self.warned_for_t_total_at_progress = -1

    def get_lr(self, step, nowarn=False):
        progress = step / self.t_total
        ret = self.get_lr_(progress)
        # warning for exceeding t_total (only active with warmup_linear
        if not nowarn and self.warn_t_total and progress > 1. and progress > self.warned_for_t_total_at_progress:
            logger.warning(
                "Training beyond specified 't_total'. Learning rate multiplier set to {}. Please set 't_total' of {} correctly."
                    .format(ret, self.__class__.__name__))
            self.warned_for_t_total_at_progress = progress
        # end warning
        return ret

    def get_lr_(self, step):
        return 1.
lukovnikov's avatar
lukovnikov committed
56
        # raise NotImplemented("use subclass")  -
lukovnikov's avatar
lukovnikov committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


class WarmupCosineSchedule(LRSchedule):
    warn_t_total = True
    def __init__(self, warmup=0.002, t_total=-1, cycles=.5, **kw):
        super(WarmupCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, **kw)
        self.cycles = cycles

    def get_lr_(self, progress):
        """ get learning rate multiplier """
        if self.t_total <= 0:
            return 1.
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)   # progress after warmup
lukovnikov's avatar
lukovnikov committed
73
            return 0.5 * (1. + math.cos(math.pi * self.cycles * 2 * progress))
lukovnikov's avatar
lukovnikov committed
74
75


lukovnikov's avatar
lukovnikov committed
76
class WarmupMultiCosineSchedule(WarmupCosineSchedule):
lukovnikov's avatar
lukovnikov committed
77
78
    warn_t_total = True
    def __init__(self, warmup=0.002, t_total=-1, cycles=1., **kw):
lukovnikov's avatar
lukovnikov committed
79
80
        super(WarmupMultiCosineSchedule, self).__init__(warmup=warmup, t_total=t_total, cycles=cycles, **kw)
        assert(cycles >= 1.)
lukovnikov's avatar
lukovnikov committed
81
82
83
84
85
86
87
88

    def get_lr_(self, progress):
        if self.t_total <= 0:
            return 1.
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)     # progress after warmup
lukovnikov's avatar
lukovnikov committed
89
            ret = 0.5 * (1. + math.cos(math.pi * ((self.cycles * progress) % 1)))
lukovnikov's avatar
lukovnikov committed
90
            return ret
lukovnikov's avatar
lukovnikov committed
91
92


lukovnikov's avatar
lukovnikov committed
93
94
95
96
97
98
99
100
101
102
103
104
105
class WarmupCosineWithRestartsSchedule(WarmupMultiCosineSchedule):
    def get_lr_(self, progress):
        if self.t_total <= 0.:
            return 1.
        progress = progress * self.cycles % 1.
        if progress < self.warmup:
            return progress / self.warmup
        else:
            progress = (progress - self.warmup) / (1 - self.warmup)     # progress after warmup
            ret = 0.5 * (1. + math.cos(math.pi * progress))
            return ret


lukovnikov's avatar
lukovnikov committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class WarmupConstantSchedule(LRSchedule):
    warn_t_total = False
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        return 1.


class WarmupLinearSchedule(LRSchedule):
    warn_t_total = True
    def get_lr_(self, progress):
        if progress < self.warmup:
            return progress / self.warmup
        return max((progress - 1.) / (self.warmup - 1.), 0)
lukovnikov's avatar
lukovnikov committed
120

121
122

SCHEDULES = {
lukovnikov's avatar
lukovnikov committed
123
124
125
126
127
    None:       LRSchedule,
    "none":     LRSchedule,
    "warmup_cosine": WarmupCosineSchedule,
    "warmup_constant": WarmupConstantSchedule,
    "warmup_linear": WarmupLinearSchedule
128
129
130
}


thomwolf's avatar
thomwolf committed
131
class BertAdam(Optimizer):
thomwolf's avatar
thomwolf committed
132
    """Implements BERT version of Adam algorithm with weight decay fix.
thomwolf's avatar
thomwolf committed
133
    Params:
thomwolf's avatar
thomwolf committed
134
135
136
137
        lr: learning rate
        warmup: portion of t_total for the warmup, -1  means no warmup. Default: -1
        t_total: total number of training steps for the learning
            rate schedule, -1  means constant learning rate. Default: -1
lukovnikov's avatar
lukovnikov committed
138
139
140
        schedule: schedule to use for the warmup (see above).
            Can be 'warmup_linear', 'warmup_constant', 'warmup_cosine', or a LRSchedule object.
            Default: 'warmup_linear'
thomwolf's avatar
thomwolf committed
141
142
143
        b1: Adams b1. Default: 0.9
        b2: Adams b2. Default: 0.999
        e: Adams epsilon. Default: 1e-6
144
        weight_decay: Weight decay. Default: 0.01
thomwolf's avatar
thomwolf committed
145
        max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
146
    """
Li Li's avatar
Li Li committed
147
    def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
148
                 b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01, init_weight_decay=0.,
thomwolf's avatar
thomwolf committed
149
                 max_grad_norm=1.0):
Li Li's avatar
Li Li committed
150
        if lr is not required and lr < 0.0:
thomwolf's avatar
thomwolf committed
151
            raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
lukovnikov's avatar
lukovnikov committed
152
        if not isinstance(schedule, LRSchedule) and schedule not in SCHEDULES:
153
154
            raise ValueError("Invalid schedule parameter: {}".format(schedule))
        if not 0.0 <= b1 < 1.0:
thomwolf's avatar
thomwolf committed
155
            raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
156
        if not 0.0 <= b2 < 1.0:
thomwolf's avatar
thomwolf committed
157
158
159
            raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
        if not e >= 0.0:
            raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
lukovnikov's avatar
lukovnikov committed
160
        # initialize schedule object
lukovnikov's avatar
lukovnikov committed
161
162
163
164
165
166
167
        if not isinstance(schedule, LRSchedule):
            schedule_type = SCHEDULES[schedule]
            schedule = schedule_type(warmup=warmup, t_total=t_total)
        else:
            if warmup != -1 or t_total != -1:
                logger.warning("Non-default warmup and t_total are ineffective when LRSchedule object is provided.")
        defaults = dict(lr=lr, schedule=schedule,
168
                        b1=b1, b2=b2, e=e, weight_decay=weight_decay, init_weight_decay=init_weight_decay,
169
                        max_grad_norm=max_grad_norm)
thomwolf's avatar
thomwolf committed
170
        super(BertAdam, self).__init__(params, defaults)
171
172
173
174
175
176
177
178

    def get_lr(self):
        lr = []
        for group in self.param_groups:
            for p in group['params']:
                state = self.state[p]
                if len(state) == 0:
                    return [0]
lukovnikov's avatar
lukovnikov committed
179
180

                lr_scheduled = group['lr']
lukovnikov's avatar
lukovnikov committed
181
                lr_scheduled *= group['schedule'].get_lr(state['step'])
lukovnikov's avatar
lukovnikov committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
                lr.append(lr_scheduled)
        return lr

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                grad = p.grad.data
                if grad.is_sparse:
                    raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]

                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    # Exponential moving average of gradient values
thomwolf's avatar
thomwolf committed
211
                    state['next_m'] = torch.zeros_like(p.data)
212
                    # Exponential moving average of squared gradient values
thomwolf's avatar
thomwolf committed
213
                    state['next_v'] = torch.zeros_like(p.data)
214

thomwolf's avatar
thomwolf committed
215
                next_m, next_v = state['next_m'], state['next_v']
216
217
218
219
220
221
222
                beta1, beta2 = group['b1'], group['b2']

                # Add grad clipping
                if group['max_grad_norm'] > 0:
                    clip_grad_norm_(p, group['max_grad_norm'])

                # Decay the first and second moment running average coefficient
thomwolf's avatar
thomwolf committed
223
224
225
226
                # In-place operations to update the averages at the same time
                next_m.mul_(beta1).add_(1 - beta1, grad)
                next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
                update = next_m / (next_v.sqrt() + group['e'])
227
228
229
230
231

                # Just adding the square of the weights to the loss function is *not*
                # the correct way of using L2 regularization/weight decay with Adam,
                # since that will interact with the m and v parameters in strange ways.
                #
thomwolf's avatar
thomwolf committed
232
                # Instead we want to decay the weights in a manner that doesn't interact
233
234
                # with the m/v parameters. This is equivalent to adding the square
                # of the weights to the loss with plain (non-momentum) SGD.
235
236
                if group['weight_decay'] > 0.0:
                    update += group['weight_decay'] * p.data
thomwolf's avatar
thomwolf committed
237

238
239
                # TODO: init weight decay

lukovnikov's avatar
lukovnikov committed
240
                lr_scheduled = group['lr']
lukovnikov's avatar
lukovnikov committed
241
                lr_scheduled *= group['schedule'].get_lr(state['step'])
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
248

                update_with_lr = lr_scheduled * update
                p.data.add_(-update_with_lr)

                state['step'] += 1

                # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
thomwolf's avatar
thomwolf committed
249
                # No bias correction
thomwolf's avatar
thomwolf committed
250
251
                # bias_correction1 = 1 - beta1 ** state['step']
                # bias_correction2 = 1 - beta2 ** state['step']
252
253

        return loss