run_xnli.py 16.7 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26

27
import datasets
VictorSanh's avatar
VictorSanh committed
28
import numpy as np
29
from datasets import load_dataset, load_metric
VictorSanh's avatar
VictorSanh committed
30

31
import transformers
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
36
37
38
39
40
41
42
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
47

VictorSanh's avatar
VictorSanh committed
48

49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
50
check_min_version("4.18.0.dev0")
Lysandre's avatar
Lysandre committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
53

VictorSanh's avatar
VictorSanh committed
54
55
56
logger = logging.getLogger(__name__)


57
58
59
60
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
61

62
63
64
65
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
66

67
68
69
70
71
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
72
73
        },
    )
74
75
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
76
    )
77
78
79
80
81
82
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
83
    )
84
85
86
87
88
89
90
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
91
    max_eval_samples: Optional[int] = field(
92
93
        default=None,
        metadata={
94
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
95
96
97
            "value if set."
        },
    )
98
    max_predict_samples: Optional[int] = field(
99
100
        default=None,
        metadata={
101
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
102
103
104
            "value if set."
        },
    )
105
106
    server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
    server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
VictorSanh's avatar
VictorSanh committed
107
108


109
110
111
112
113
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
114

115
116
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
117
    )
118
119
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
120
    )
121
122
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
123
    )
124
125
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
126
    )
127
128
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
129
    )
130
    cache_dir: Optional[str] = field(
131
        default=None,
132
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
133
    )
134
135
136
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
137
    )
138
139
140
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
141
    )
142
143
144
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
145
    )
146
147
148
149
150
151
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
152
153
    )

154
155
156
157
158
159
160
161
162

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

VictorSanh's avatar
VictorSanh committed
163
    # Setup distant debugging if needed
164
    if data_args.server_ip and data_args.server_port:
VictorSanh's avatar
VictorSanh committed
165
166
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
167

VictorSanh's avatar
VictorSanh committed
168
        print("Waiting for debugger attach")
169
        ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
VictorSanh's avatar
VictorSanh committed
170
171
172
        ptvsd.wait_for_attach()

    # Setup logging
173
    logging.basicConfig(
174
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
175
        datefmt="%m/%d/%Y %H:%M:%S",
176
        handlers=[logging.StreamHandler(sys.stdout)],
177
    )
178
179
180
181
182
183
184

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
185
186

    # Log on each process the small summary:
187
    logger.warning(
188
189
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
190
    )
191
192
    logger.info(f"Training/evaluation parameters {training_args}")

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

208
209
210
211
212
213
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
214
215
    if training_args.do_train:
        if model_args.train_language is None:
216
217
218
219
220
221
222
            train_dataset = load_dataset(
                "xnli",
                model_args.language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
223
        else:
224
            train_dataset = load_dataset(
225
226
227
228
229
                "xnli",
                model_args.train_language,
                split="train",
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
230
            )
231
232
233
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
234
235
236
237
238
239
240
        eval_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="validation",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
241
242
243
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
244
245
246
247
248
249
250
        predict_dataset = load_dataset(
            "xnli",
            model_args.language,
            split="test",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
251
        label_list = predict_dataset.features["label"].names
252
253

    # Labels
VictorSanh's avatar
VictorSanh committed
254
255
256
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
257
258
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
259
    config = AutoConfig.from_pretrained(
260
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
261
        num_labels=num_labels,
262
263
264
265
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
266
    )
267
    tokenizer = AutoTokenizer.from_pretrained(
268
269
270
271
272
273
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
274
    )
275
    model = AutoModelForSequenceClassification.from_pretrained(
276
277
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
278
        config=config,
279
280
281
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
282
    )
VictorSanh's avatar
VictorSanh committed
283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
301

302
303
    if training_args.do_train:
        if data_args.max_train_samples is not None:
304
305
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
306
307
308
309
310
311
312
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
313
314
315
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
316
317

    if training_args.do_eval:
318
        if data_args.max_eval_samples is not None:
319
320
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
321
322
323
324
325
326
327
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
328

329
    if training_args.do_predict:
330
        if data_args.max_predict_samples is not None:
331
332
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
333
334
335
336
337
338
339
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

    # Get the metric function
    metric = load_metric("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
363
        train_dataset=train_dataset if training_args.do_train else None,
364
365
366
367
368
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
369
370

    # Training
371
    if training_args.do_train:
372
        checkpoint = None
373
374
375
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
376
377
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
378
        metrics = train_result.metrics
379
380
381
382
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
383

384
        trainer.save_model()  # Saves the tokenizer too for easy upload
385

386
387
388
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
389

390
391
392
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
393
394
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

395
396
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
397

398
399
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
400

401
402
403
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
404
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
405

406
407
408
409
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
410

411
412
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
413
414

        predictions = np.argmax(predictions, axis=1)
415
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
416
        if trainer.is_world_process_zero():
417
            with open(output_predict_file, "w") as writer:
418
419
420
421
422
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
423
424
425

if __name__ == "__main__":
    main()