modeling.py 65.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21
22

import copy
import json
import logging
thomwolf's avatar
thomwolf committed
23
24
25
26
import math
import os
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
from torch import nn
30
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
31

32
from .file_utils import cached_path
33
from .model_utils import WEIGHTS_NAME, CONFIG_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
thomwolf's avatar
thomwolf committed
34
35
36
37

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
38
39
40
41
42
43
44
45
46
47
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
48
49
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
thomwolf's avatar
thomwolf committed
50
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
51
52
53
54
55
56
57
58
59
60
61
62
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
    'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
    'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
    'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
thomwolf's avatar
thomwolf committed
63
64
65
    'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
    'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
    'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
thomwolf's avatar
thomwolf committed
66
67
}

thomwolf's avatar
thomwolf committed
68

69
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
70
71
    """ Load tf checkpoints in a pytorch model
    """
72
73
74
75
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
76
    except ImportError:
77
78
79
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
96
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
111
112
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
113
            else:
114
115
116
117
118
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
136
137
138
139
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
140
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
141
142
143
144
145
146
147
148
149
150
151
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


152
class BertConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
153
154
    """Configuration class to store the configuration of a `BertModel`.
    """
155
156
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
164
165
166
167
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
168
                 initializer_range=0.02,
169
170
                 layer_norm_eps=1e-12,
                 finetuning_task=None):
thomwolf's avatar
thomwolf committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
194
            layer_norm_eps: The epsilon used by LayerNorm.
195
            finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
196
        """
thomwolf's avatar
thomwolf committed
197
198
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
199
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
215
            self.layer_norm_eps = layer_norm_eps
216
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
217
218
219
220
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

221

222
223
224
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
225
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
240
241
242
243
244
245

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
246
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
247
248
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
249
250
251

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
252
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
273
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
274
275
276
277
278
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
279
        self.output_attentions = output_attentions
280

thomwolf's avatar
thomwolf committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

296
    def forward(self, hidden_states, attention_mask, head_mask=None):
thomwolf's avatar
thomwolf committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

318
319
320
321
        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

thomwolf's avatar
thomwolf committed
322
        context_layer = torch.matmul(attention_probs, value_layer)
323
324
325
326
        if self.keep_multihead_output:
            self.multihead_output = context_layer
            self.multihead_output.retain_grad()

thomwolf's avatar
thomwolf committed
327
328
329
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
330
331
332

        outputs = [context_layer, attention_probs] if self.output_attentions else [context_layer]
        return outputs
thomwolf's avatar
thomwolf committed
333
334
335
336
337
338


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
339
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
340
341
342
343
344
345
346
347
348
349
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
350
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
351
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
352
        self.output_attentions = output_attentions
353
        self.self = BertSelfAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
354
355
        self.output = BertSelfOutput(config)

thomwolf's avatar
thomwolf committed
356
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
357
358
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
359
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
thomwolf's avatar
thomwolf committed
360
361
362
363
364
365
366
367
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
368
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
thomwolf's avatar
thomwolf committed
369
370
371
372
        # Update hyper params
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads

373
    def forward(self, input_tensor, attention_mask, head_mask=None):
374
375
376
377
        self_outputs = self.self(input_tensor, attention_mask, head_mask)
        attention_output = self.output(self_outputs[0], input_tensor)
        outputs = [attention_output] + self_outputs[1:]  # add attentions if we output them
        return outputs
thomwolf's avatar
thomwolf committed
378
379
380
381
382
383


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
384
385
386
387
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
388
389
390
391
392
393
394
395
396
397
398

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
399
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
400
401
402
403
404
405
406
407
408
409
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
410
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
411
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
412
        self.output_attentions = output_attentions
413
        self.attention = BertAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
414
415
416
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

417
    def forward(self, hidden_states, attention_mask, head_mask=None):
418
419
        attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        intermediate_output = self.intermediate(attention_outputs[0])
thomwolf's avatar
thomwolf committed
420
        layer_output = self.output(intermediate_output, attention_output)
421
422
        outputs = [layer_output] + attention_outputs[1:]  # add attentions if we output them
        return outputs
thomwolf's avatar
thomwolf committed
423
424
425


class BertEncoder(nn.Module):
426
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
427
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
428
        self.output_attentions = output_attentions
429
430
        self.output_hidden_states = output_hidden_states
        layer = BertLayer(config, output_attentions=output_attentions)
431
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
432

433
434
    def forward(self, hidden_states, attention_mask, head_mask=None):
        all_hidden_states = []
thomwolf's avatar
thomwolf committed
435
        all_attentions = []
436
        for i, layer_module in enumerate(self.layer):
437
438
439
440
441
442
            if self.output_hidden_states:
                all_hidden_states.append(hidden_states)

            layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i])
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
443
            if self.output_attentions:
444
445
446
447
448
449
450
451
452
                all_attentions.append(layer_outputs[1])

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states.append(hidden_states)

        outputs = [hidden_states]
        if self.output_hidden_states:
            outputs.append(all_hidden_states)
thomwolf's avatar
thomwolf committed
453
        if self.output_attentions:
454
455
            outputs.append(all_attentions)
        return outputs  # outputs, (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
477
478
479
480
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
481
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


541
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
542
543
544
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
545
546
547
548
549
550
551
552
    config_class = BertConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

    def __init__(self, *inputs, **kwargs):
        super(BertPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
553

thomwolf's avatar
thomwolf committed
554
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
555
556
557
558
559
560
561
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
562
563
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
564
565
566
567
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


thomwolf's avatar
thomwolf committed
568
class BertModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
569
570
571
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
572
573
574
575
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
576
577
578
579

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
580
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
581
582
583
584
585
586
587
588
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
589
590
591
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

thomwolf's avatar
thomwolf committed
592
593
594
595
596
597
598

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
599
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
thomwolf's avatar
thomwolf committed
600
601
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
602
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
thomwolf's avatar
thomwolf committed
603
604
605
606
607
608

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
609
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
610

thomwolf's avatar
thomwolf committed
611
612
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
613
614
615
616
617

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
618
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
619
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
620
        self.output_attentions = output_attentions
621
        self.output_hidden_states = output_hidden_states
thomwolf's avatar
thomwolf committed
622
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
623
        self.encoder = BertEncoder(config, output_attentions=output_attentions,
624
                                           output_hidden_states=output_hidden_states)
thomwolf's avatar
thomwolf committed
625
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
626
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
627

thomwolf's avatar
thomwolf committed
628
629
630
631
632
633
634
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

635
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

thomwolf's avatar
thomwolf committed
656
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
657
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
658
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
659
660
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
661
662
        if head_mask is not None:
            if head_mask.dim() == 1:
663
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
664
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
665
            elif head_mask.dim() == 2:
666
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
thomwolf's avatar
thomwolf committed
667
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
668
669
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
670

thomwolf's avatar
thomwolf committed
671
        embedding_output = self.embeddings(input_ids, token_type_ids)
672
673
674
675
        encoder_outputs = self.encoder(embedding_output,
                                       extended_attention_mask,
                                       head_mask=head_mask)
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
676
        pooled_output = self.pooler(sequence_output)
677
678
679

        outputs = [sequence_output, pooled_output] + encoder_outputs[1:]  # add hidden_states and attentions if they are here
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
680
681


thomwolf's avatar
thomwolf committed
682
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
683
684
685
686
687
688
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
689
690
691
692
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
693
694
695
696

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
697
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
698
699
700
701
702
703
704
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
705
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
706
707
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
708
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
thomwolf's avatar
thomwolf committed
709
710
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
711
712
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
713
714
715
716
717
718
719

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
720
721
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
722
723
724
725
726
727

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
728
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
729

thomwolf's avatar
thomwolf committed
730
731
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
732
733
734
735
736

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
737
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
738
        super(BertForPreTraining, self).__init__(config)
739
        self.output_attentions = output_attentions
740
741
        self.output_hidden_states = output_hidden_states

thomwolf's avatar
thomwolf committed
742
        self.bert = BertModel(config, output_attentions=output_attentions,
743
                                      output_hidden_states=output_hidden_states)
thomwolf's avatar
thomwolf committed
744
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
745
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
746

747
748
749
750
751
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None,
                next_sentence_label=None, head_mask=None):
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
752
753
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

754
755
        outputs = [prediction_scores, seq_relationship_score] + outputs[2:]  # add hidden states and attention if they are here

thomwolf's avatar
thomwolf committed
756
757
        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
758
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
759
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
760
            total_loss = masked_lm_loss + next_sentence_loss
761
762
763
            outputs = [total_loss] + outputs

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
764
765


thomwolf's avatar
thomwolf committed
766
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
767
768
769
770
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
771
772
773
774
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
775
776
777
778

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
779
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
780
781
782
783
784
785
786
787
788
789
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
790
791
792
793
794
795
        `head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
796
797

    Outputs:
wlhgtc's avatar
wlhgtc committed
798
        if `masked_lm_labels` is  not `None`:
thomwolf's avatar
thomwolf committed
799
800
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
801
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
thomwolf's avatar
thomwolf committed
802
803
804
805
806
807

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
808
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
809

thomwolf's avatar
thomwolf committed
810
811
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
812
813
814
815
816

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
817
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
818
        super(BertForMaskedLM, self).__init__(config)
819
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
820
821
822
        self.output_hidden_states = output_hidden_states

        self.bert = BertModel(config, output_attentions=output_attentions )
thomwolf's avatar
thomwolf committed
823
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
thomwolf's avatar
thomwolf committed
824
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
825

826
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
827
828
829
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
830
831
        prediction_scores = self.cls(sequence_output)

thomwolf's avatar
thomwolf committed
832
        outputs = [prediction_scores] + outputs[2:]  # Add hidden states and attention is they are here
thomwolf's avatar
thomwolf committed
833
834
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
835
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
836
837
838
            outputs = [masked_lm_loss] + outputs

        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
839
840


thomwolf's avatar
thomwolf committed
841
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
842
843
844
845
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
846
847
848
849
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
850
851
852
853

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
854
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
855
856
857
858
859
860
861
862
863
864
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.
865
866
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
867
868
869
870
871
872

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
873
            Outputs the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
874
875
876
877
878
879

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
880
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
881

thomwolf's avatar
thomwolf committed
882
883
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
884
885
886
887
888

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
889
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
890
        super(BertForNextSentencePrediction, self).__init__(config)
891
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
892
893
894
        self.output_hidden_states = output_hidden_states

        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
895
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
896

thomwolf's avatar
thomwolf committed
897
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
898

899
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
thomwolf's avatar
thomwolf committed
900
901
902
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

903
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
904

thomwolf's avatar
thomwolf committed
905
        outputs = [seq_relationship_score] + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
906
907
        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
908
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
909
910
911
            outputs = [next_sentence_loss] + outputs

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
912
913


thomwolf's avatar
thomwolf committed
914
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
915
916
917
918
919
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
920
921
922
923
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
924
925
926
927
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
928
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
929
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
930
931
932
933
934
935
936
937
938
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].
939
940
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
941
942
943
944
945

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
946
            Outputs the classification logits of shape [batch_size, num_labels].
thomwolf's avatar
thomwolf committed
947
948
949
950
951
952

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
953
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
954

thomwolf's avatar
thomwolf committed
955
956
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
957
958
959
960
961
962
963

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
964
    def __init__(self, config, num_labels=2, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
965
        super(BertForSequenceClassification, self).__init__(config)
966
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
967
        self.output_hidden_states = output_hidden_states
968
        self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
969
970

        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
971
972
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
thomwolf's avatar
thomwolf committed
973

thomwolf's avatar
thomwolf committed
974
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
975

976
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
977
978
979
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
980
981
982
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

thomwolf's avatar
thomwolf committed
983
984
        outputs = [logits] + outputs[2:]  # add hidden states and attention if they are here

thomwolf's avatar
thomwolf committed
985
        if labels is not None:
986
987
988
989
990
991
992
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
993
994
995
            outputs = [loss] + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)
996
997


thomwolf's avatar
thomwolf committed
998
class BertForMultipleChoice(BertPreTrainedModel):
999
1000
1001
1002
1003
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
1004
1005
1006
1007
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
1008
1009
1010
1011
1012
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1013
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1014
1015
1016
1017
1018
1019
1020
1021
1022
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
1023
1024
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1047
    def __init__(self, config, num_choices=2, output_attentions=False, output_hidden_states=False):
1048
        super(BertForMultipleChoice, self).__init__(config)
1049
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
1050
        self.output_hidden_states = output_hidden_states
1051
        self.num_choices = num_choices
thomwolf's avatar
thomwolf committed
1052
1053

        self.bert = BertModel(config, output_attentions=output_attentions)
1054
1055
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1056

thomwolf's avatar
thomwolf committed
1057
        self.apply(self.init_weights)
1058

1059
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
1060
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1061
1062
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
thomwolf's avatar
thomwolf committed
1063
1064
1065
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

1066
1067
1068
1069
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

thomwolf's avatar
thomwolf committed
1070
1071
        outputs = [reshaped_logits] + outputs[2:]  # add hidden states and attention if they are here

1072
1073
1074
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
thomwolf's avatar
thomwolf committed
1075
1076
1077
            outputs = [loss] + outputs

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1078
1079


thomwolf's avatar
thomwolf committed
1080
class BertForTokenClassification(BertPreTrainedModel):
1081
1082
1083
1084
1085
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
1086
1087
1088
1089
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
1090
1091
1092
1093
1094
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1095
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
1096
1097
1098
1099
1100
1101
1102
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
thomwolf's avatar
thomwolf committed
1103
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
1104
            with indices selected in [0, ..., num_labels].
1105
1106
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
1107
1108
1109
1110
1111

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1112
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1130
    def __init__(self, config, num_labels=2, output_attentions=False, output_hidden_states=False):
1131
        super(BertForTokenClassification, self).__init__(config)
1132
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
1133
        self.output_hidden_states = output_hidden_states
1134
        self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
1135
1136

        self.bert = BertModel(config, output_attentions=output_attentions)
1137
1138
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
thomwolf's avatar
thomwolf committed
1139

thomwolf's avatar
thomwolf committed
1140
        self.apply(self.init_weights)
1141

1142
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1143
1144
1145
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

1146
1147
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1148

thomwolf's avatar
thomwolf committed
1149
        outputs = [logits] + outputs[2:]  # add hidden states and attention if they are here
1150
1151
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1152
1153
1154
1155
1156
1157
1158
1159
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
1160
1161
1162
            outputs = [loss] + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1163
1164


thomwolf's avatar
thomwolf committed
1165
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1166
1167
1168
1169
1170
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
1171
1172
1173
1174
        `config`: a BertConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
1175
1176
1177
1178

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1179
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
1193
1194
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
1195
1196
1197
1198
1199
1200

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
1201
            position tokens of shape [batch_size, sequence_length].
thomwolf's avatar
thomwolf committed
1202
1203
1204
1205
1206
1207

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1208
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1209

thomwolf's avatar
thomwolf committed
1210
1211
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1212
1213
1214
1215
1216

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1217
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
thomwolf's avatar
thomwolf committed
1218
        super(BertForQuestionAnswering, self).__init__(config)
1219
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
1220
1221
        self.output_hidden_states = output_hidden_states
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1222
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
thomwolf's avatar
thomwolf committed
1223

thomwolf's avatar
thomwolf committed
1224
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
1225

thomwolf's avatar
thomwolf committed
1226
1227
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None,
                end_positions=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1228
1229
1230
        outputs = self.bert(input_ids, token_type_ids, attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1231
1232
1233
1234
1235
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

thomwolf's avatar
thomwolf committed
1236
        outputs = [start_logits, end_logits] + outputs[2:]
thomwolf's avatar
thomwolf committed
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
thomwolf's avatar
thomwolf committed
1252
1253
1254
            outputs = [total_loss] + outputs

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)