test_modeling_tf_bert.py 13.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import BertConfig, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf, slow
thomwolf's avatar
thomwolf committed
24

thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28
29
30
31
32
33
34
35
36
37
    from transformers.modeling_tf_bert import (
        TFBertModel,
        TFBertForMaskedLM,
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
        TFBertForSequenceClassification,
        TFBertForMultipleChoice,
        TFBertForTokenClassification,
        TFBertForQuestionAnswering,
    )
thomwolf's avatar
thomwolf committed
38

thomwolf's avatar
thomwolf committed
39

40
@require_tf
41
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
42

43
44
45
46
47
48
49
50
51
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
52
            TFBertForMultipleChoice,
53
54
55
56
        )
        if is_tf_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
57
58

    class TFBertModelTester(object):
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = BertConfig(
thomwolf's avatar
thomwolf committed
127
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
128
129
130
131
132
133
134
135
136
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
137
138
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
139
140
141

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

142
143
144
        def create_and_check_bert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
145
            model = TFBertModel(config=config)
146
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
147
            sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153
154
155
156
157
158

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
159
160
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
161
162
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])

163
164
165
        def create_and_check_bert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
166
            model = TFBertForMaskedLM(config=config)
167
168
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
thomwolf's avatar
thomwolf committed
169
170
171
172
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
173
174
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
175

176
177
178
        def create_and_check_bert_for_next_sequence_prediction(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
179
            model = TFBertForNextSentencePrediction(config=config)
180
181
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (seq_relationship_score,) = model(inputs)
thomwolf's avatar
thomwolf committed
182
183
184
            result = {
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
185
            self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
186

187
188
189
        def create_and_check_bert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
190
            model = TFBertForPreTraining(config=config)
191
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
            prediction_scores, seq_relationship_score = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
            self.parent.assertListEqual(
198
199
200
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
201

202
203
204
        def create_and_check_bert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
205
206
            config.num_labels = self.num_labels
            model = TFBertForSequenceClassification(config=config)
207
208
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
209
210
211
            result = {
                "logits": logits.numpy(),
            }
212
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
213

214
215
216
        def create_and_check_bert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
217
218
219
220
221
            config.num_choices = self.num_choices
            model = TFBertForMultipleChoice(config=config)
            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
222
223
224
225
226
227
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
            }
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
228
229
230
            result = {
                "logits": logits.numpy(),
            }
231
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
232

233
234
235
        def create_and_check_bert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
236
237
            config.num_labels = self.num_labels
            model = TFBertForTokenClassification(config=config)
238
239
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
240
241
242
243
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
244
245
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
            )
thomwolf's avatar
thomwolf committed
246

247
248
249
        def create_and_check_bert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
250
            model = TFBertForQuestionAnswering(config=config)
251
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
252
253
254
255
256
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
257
258
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
259
260
261

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
262
263
264
265
266
267
268
269
270
271
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFBertModelTest.TFBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

313
    @slow
thomwolf's avatar
thomwolf committed
314
    def test_model_from_pretrained(self):
315
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
316
        for model_name in ["bert-base-uncased"]:
317
            model = TFBertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
318
            self.assertIsNotNone(model)