test_modeling_tf_bert.py 13.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import BertConfig, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf, slow
thomwolf's avatar
thomwolf committed
24

thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28
29
30
31
32
33
34
35
36
37
    from transformers.modeling_tf_bert import (
        TFBertModel,
        TFBertForMaskedLM,
        TFBertForNextSentencePrediction,
        TFBertForPreTraining,
        TFBertForSequenceClassification,
        TFBertForMultipleChoice,
        TFBertForTokenClassification,
        TFBertForQuestionAnswering,
    )
thomwolf's avatar
thomwolf committed
38

thomwolf's avatar
thomwolf committed
39

40
@require_tf
41
class TFBertModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
42

43
44
45
46
47
48
49
50
51
52
53
54
55
    all_model_classes = (
        (
            TFBertModel,
            TFBertForMaskedLM,
            TFBertForNextSentencePrediction,
            TFBertForPreTraining,
            TFBertForQuestionAnswering,
            TFBertForSequenceClassification,
            TFBertForTokenClassification,
        )
        if is_tf_available()
        else ()
    )
thomwolf's avatar
thomwolf committed
56
57

    class TFBertModelTester(object):
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = BertConfig(
thomwolf's avatar
thomwolf committed
126
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
127
128
129
130
131
132
133
134
135
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
136
137
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
138
139
140

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

141
142
143
        def create_and_check_bert_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
144
            model = TFBertModel(config=config)
145
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
146
            sequence_output, pooled_output = model(inputs)
thomwolf's avatar
thomwolf committed
147
148
149
150
151
152
153
154
155
156
157

            inputs = [input_ids, input_mask]
            sequence_output, pooled_output = model(inputs)

            sequence_output, pooled_output = model(input_ids)

            result = {
                "sequence_output": sequence_output.numpy(),
                "pooled_output": pooled_output.numpy(),
            }
            self.parent.assertListEqual(
158
159
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
160
161
            self.parent.assertListEqual(list(result["pooled_output"].shape), [self.batch_size, self.hidden_size])

162
163
164
        def create_and_check_bert_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
165
            model = TFBertForMaskedLM(config=config)
166
167
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (prediction_scores,) = model(inputs)
thomwolf's avatar
thomwolf committed
168
169
170
171
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
172
173
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
174

175
176
177
        def create_and_check_bert_for_next_sequence_prediction(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
178
            model = TFBertForNextSentencePrediction(config=config)
179
180
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (seq_relationship_score,) = model(inputs)
thomwolf's avatar
thomwolf committed
181
182
183
            result = {
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
184
            self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
185

186
187
188
        def create_and_check_bert_for_pretraining(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
189
            model = TFBertForPreTraining(config=config)
190
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
191
192
193
194
195
196
            prediction_scores, seq_relationship_score = model(inputs)
            result = {
                "prediction_scores": prediction_scores.numpy(),
                "seq_relationship_score": seq_relationship_score.numpy(),
            }
            self.parent.assertListEqual(
197
198
199
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
            self.parent.assertListEqual(list(result["seq_relationship_score"].shape), [self.batch_size, 2])
thomwolf's avatar
thomwolf committed
200

201
202
203
        def create_and_check_bert_for_sequence_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
204
205
            config.num_labels = self.num_labels
            model = TFBertForSequenceClassification(config=config)
206
207
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
208
209
210
            result = {
                "logits": logits.numpy(),
            }
211
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_labels])
thomwolf's avatar
thomwolf committed
212

213
214
215
        def create_and_check_bert_for_multiple_choice(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
216
217
218
219
220
            config.num_choices = self.num_choices
            model = TFBertForMultipleChoice(config=config)
            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
221
222
223
224
225
226
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
            }
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
227
228
229
            result = {
                "logits": logits.numpy(),
            }
230
            self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
231

232
233
234
        def create_and_check_bert_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
235
236
            config.num_labels = self.num_labels
            model = TFBertForTokenClassification(config=config)
237
238
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
thomwolf's avatar
thomwolf committed
239
240
241
242
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
243
244
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
            )
thomwolf's avatar
thomwolf committed
245

246
247
248
        def create_and_check_bert_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
249
            model = TFBertForQuestionAnswering(config=config)
250
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
251
252
253
254
255
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
256
257
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])
thomwolf's avatar
thomwolf committed
258
259
260

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
261
262
263
264
265
266
267
268
269
270
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFBertModelTest.TFBertModelTester(self)
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_bert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_masked_lm(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_multiple_choice(*config_and_inputs)

    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_next_sequence_prediction(*config_and_inputs)

    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_pretraining(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_bert_for_token_classification(*config_and_inputs)

312
    @slow
thomwolf's avatar
thomwolf committed
313
    def test_model_from_pretrained(self):
314
        # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
315
        for model_name in ["bert-base-uncased"]:
316
            model = TFBertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
317
            self.assertIsNotNone(model)