run_lm_finetuning.py 33.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26


import argparse
import glob
import logging
import os
27
import pickle
28
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
29
30
import re
import shutil
31
from typing import Dict, List, Tuple
32
33
34

import numpy as np
import torch
35
from torch.nn.utils.rnn import pad_sequence
Aymeric Augustin's avatar
Aymeric Augustin committed
36
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
37
38
39
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

40
41
42
43
44
45
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    BertConfig,
    BertForMaskedLM,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
46
47
48
49
50
51
    CamembertConfig,
    CamembertForMaskedLM,
    CamembertTokenizer,
    DistilBertConfig,
    DistilBertForMaskedLM,
    DistilBertTokenizer,
52
53
54
55
56
57
    GPT2Config,
    GPT2LMHeadModel,
    GPT2Tokenizer,
    OpenAIGPTConfig,
    OpenAIGPTLMHeadModel,
    OpenAIGPTTokenizer,
58
    PreTrainedModel,
59
    PreTrainedTokenizer,
60
61
62
    RobertaConfig,
    RobertaForMaskedLM,
    RobertaTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
63
    get_linear_schedule_with_warmup,
64
)
65

66

Aymeric Augustin's avatar
Aymeric Augustin committed
67
68
try:
    from torch.utils.tensorboard import SummaryWriter
69
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
70
71
72
    from tensorboardX import SummaryWriter


73
logger = logging.getLogger(__name__)
74
75
76


MODEL_CLASSES = {
77
78
79
80
81
82
    "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
    "openai-gpt": (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    "bert": (BertConfig, BertForMaskedLM, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer),
83
84
85
}


86
class TextDataset(Dataset):
87
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
88
89
        assert os.path.isfile(file_path)
        directory, filename = os.path.split(file_path)
90
        cached_features_file = os.path.join(
91
            directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename
92
        )
93

Lysandre's avatar
Lysandre committed
94
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
95
            logger.info("Loading features from cached file %s", cached_features_file)
96
            with open(cached_features_file, "rb") as handle:
97
98
99
100
101
102
103
104
105
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
106

107
108
            for i in range(0, len(tokenized_text) - block_size + 1, block_size):  # Truncate in block of block_size
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
109
110
111
112
113
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
114
            with open(cached_features_file, "wb") as handle:
115
116
117
118
119
120
121
122
123
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item])


124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class LineByLineTextDataset(Dataset):
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
        assert os.path.isfile(file_path)
        # Here, we do not cache the features, operating under the assumption
        # that we will soon use fast multithreaded tokenizers from the
        # `tokenizers` repo everywhere =)
        logger.info("Creating features from dataset file at %s", file_path)

        with open(file_path, encoding="utf-8") as f:
            lines = [line for line in f.read().splitlines() if len(line) > 0]

        self.examples = tokenizer.batch_encode_plus(lines, max_length=block_size)["input_ids"]

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
        return torch.tensor(self.examples[i])


144
def load_and_cache_examples(args, tokenizer, evaluate=False):
145
146
147
148
149
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
        return LineByLineTextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
    else:
        return TextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
150
151


152
153
154
155
156
157
158
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

159

160
161
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
    ordering_and_checkpoint_path = []
162

163
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
164
165

    for path in glob_checkpoints:
166
167
168
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
169
            regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
170
171
172
173
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
174
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    return checkpoints_sorted


def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
    if len(checkpoints_sorted) <= args.save_total_limit:
        return

jinoobaek-qz's avatar
jinoobaek-qz committed
189
190
191
192
193
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
194
195


196
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
197
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
Lysandre's avatar
Lysandre committed
198
    inputs = inputs.clone().type(dtype=torch.long)
199
    labels = inputs.clone()
200
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
201
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
202
203
204
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
205
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
206
207
208
    if tokenizer._pad_token is not None:
        padding_mask = labels.eq(tokenizer.pad_token_id)
        probability_matrix.masked_fill_(padding_mask, value=0.0)
209
    masked_indices = torch.bernoulli(probability_matrix).bool()
Lysandre's avatar
Lysandre committed
210
    labels[~masked_indices] = -1  # We only compute loss on masked tokens
211
212

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
213
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
214
215
216
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
217
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
218
219
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
220

221
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
222
    return inputs, labels
223

224

225
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
226
227
228
229
230
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
231
232

    def collate(examples: List[torch.Tensor]):
233
234
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
235
236
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

thomwolf's avatar
thomwolf committed
237
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
238
239
240
    train_dataloader = DataLoader(
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate
    )
241
242
243
244
245
246
247
248

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
249
    no_decay = ["bias", "LayerNorm.weight"]
250
    optimizer_grouped_parameters = [
251
252
253
254
255
256
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
257
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
258
259
260
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
261
262

    # Check if saved optimizer or scheduler states exist
Julien Chaumond's avatar
Julien Chaumond committed
263
264
265
266
    if (
        args.model_name_or_path
        and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
        and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
267
    ):
268
        # Load in optimizer and scheduler states
269
270
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
271

272
273
274
275
276
277
278
279
280
281
282
283
284
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
285
286
287
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
288
289
290
291
292
293

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
294
295
296
297
298
299
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
300
301
302
303
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
304
305
306
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
307
    if args.model_name_or_path and os.path.exists(args.model_name_or_path):
308
309
310
311
312
313
314
315
316
317
318
319
320
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
321

322
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
323

324
    model_to_resize = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
325
326
    model_to_resize.resize_token_embeddings(len(tokenizer))

327
    model.zero_grad()
328
329
330
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
331
    set_seed(args)  # Added here for reproducibility
Bilal Khan's avatar
Bilal Khan committed
332
    for _ in train_iterator:
333
334
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
335

336
337
338
339
340
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

341
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
342
343
344
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
345
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
346
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
347
348

            if args.n_gpu > 1:
349
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
350
351
352
353
354
355
356
357
358
359
360
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
361
362
363
364
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
365
                optimizer.step()
366
                scheduler.step()  # Update learning rate schedule
367
368
369
370
371
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
372
373
374
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
375
376
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
377
378
379
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
380
381
382
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
383
                    checkpoint_prefix = "checkpoint"
384
                    # Save model checkpoint
385
                    output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
386
                    os.makedirs(output_dir, exist_ok=True)
387
388
389
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
390
                    model_to_save.save_pretrained(output_dir)
391
392
                    tokenizer.save_pretrained(output_dir)

393
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
394
395
                    logger.info("Saving model checkpoint to %s", output_dir)

396
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
397

398
399
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
Bilal Khan's avatar
Bilal Khan committed
400
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
401

402
403
404
405
406
407
408
409
410
411
412
413
414
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


415
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
416
417
418
419
420
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

421
422
    if args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir, exist_ok=True)
423
424
425

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
426
427

    def collate(examples: List[torch.Tensor]):
428
429
        if tokenizer._pad_token is None:
            return pad_sequence(examples, batch_first=True)
430
431
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

432
    eval_sampler = SequentialSampler(eval_dataset)
433
434
435
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
    )
436

ronakice's avatar
ronakice committed
437
438
439
440
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

441
442
443
444
445
446
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
447
448
    model.eval()

449
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
450
451
452
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
453
454

        with torch.no_grad():
altsoph's avatar
altsoph committed
455
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
456
457
458
459
460
461
462
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

463
    result = {"perplexity": perplexity}
464

465
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
466
467
468
469
470
471
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

472
    return result
473
474
475
476
477


def main():
    parser = argparse.ArgumentParser()

478
    # Required parameters
479
480
481
482
483
484
485
486
487
    parser.add_argument(
        "--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
488
489
490
    parser.add_argument(
        "--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.",
    )
491

492
    # Other parameters
493
494
495
496
497
498
    parser.add_argument(
        "--eval_data_file",
        default=None,
        type=str,
        help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
    )
499
500
501
502
503
    parser.add_argument(
        "--line_by_line",
        action="store_true",
        help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
    )
Julien Chaumond's avatar
Julien Chaumond committed
504
505
506
    parser.add_argument(
        "--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir"
    )
507
508
    parser.add_argument(
        "--model_name_or_path",
509
        default=None,
510
        type=str,
511
        help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
512
513
514
515
516
517
518
519
520
521
522
    )

    parser.add_argument(
        "--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
    )
    parser.add_argument(
        "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
    )

    parser.add_argument(
        "--config_name",
523
        default=None,
524
        type=str,
525
        help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.",
526
527
528
    )
    parser.add_argument(
        "--tokenizer_name",
529
530
531
532
        default=None,
        type=str,
        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.",
    )
533
534
    parser.add_argument(
        "--cache_dir",
535
        default=None,
536
        type=str,
Oren Amsalem's avatar
Oren Amsalem committed
537
        help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)",
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    )
    parser.add_argument(
        "--block_size",
        default=-1,
        type=int,
        help="Optional input sequence length after tokenization."
        "The training dataset will be truncated in block of this size for training."
        "Default to the model max input length for single sentence inputs (take into account special tokens).",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

578
579
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=None,
        help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
    )
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
615
616
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
617
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
618
        raise ValueError(
619
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
620
621
            "flag (masked language modeling)."
        )
622
    if args.eval_data_file is None and args.do_eval:
623
624
625
626
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
627
628
629
    if args.should_continue:
        sorted_checkpoints = _sorted_checkpoints(args)
        if len(sorted_checkpoints) == 0:
Julien Chaumond's avatar
Julien Chaumond committed
630
            raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
631
632
        else:
            args.model_name_or_path = sorted_checkpoints[-1]
633
634
635
636
637
638
639
640
641
642
643
644

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
645
646
647
648
649

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
650

651
652
653
654
655
656
657
658
659
660
661
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
662
        torch.distributed.init_process_group(backend="nccl")
663
664
665
666
        args.n_gpu = 1
    args.device = device

    # Setup logging
667
668
669
670
671
672
673
674
675
676
677
678
679
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
680
681
682
683
684
685

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
686
687
688
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
689
690
691
692
693
694
695
696
697
698
699
700
701

    if args.config_name:
        config = config_class.from_pretrained(args.config_name, cache_dir=args.cache_dir)
    elif args.model_name_or_path:
        config = config_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
    else:
        config = config_class()

    if args.tokenizer_name:
        tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
    elif args.model_name_or_path:
        tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
    else:
702
703
704
        raise ValueError(
            "You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name".format(tokenizer_class.__name__)
705
706
        )

707
    if args.block_size <= 0:
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        args.block_size = tokenizer.max_len_single_sentence
        # Our input block size will be the max possible for the model
    else:
        args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)

    if args.model_name_or_path:
        model = model_class.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
            cache_dir=args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
        model = model_class(config=config)

724
    model.to(args.device)
725
726

    if args.local_rank == 0:
727
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
728
729
730
731
732

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
733
734
735
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

736
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
737
738
739
740

        if args.local_rank == 0:
            torch.distributed.barrier()

741
742
743
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

744
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
745
746
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
747
748
        if args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir, exist_ok=True)
749
750
751
752

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
753
754
755
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
756
757
758
759
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
760
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
761
762
763

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
764
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
765
766
767
768
769
770
771
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
772
773
774
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
775
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
776
777
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
778
779
780
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

781
782
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
783
            result = evaluate(args, model, tokenizer, prefix=prefix)
784
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
785
786
787
788
789
790
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
791
    main()