run_lm_finetuning.py 31.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26


import argparse
import glob
import logging
import os
27
import pickle
28
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
29
30
import re
import shutil
31
from typing import Dict, List, Tuple
32
33
34

import numpy as np
import torch
Aymeric Augustin's avatar
Aymeric Augustin committed
35
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
36
37
38
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

39
40
41
42
43
44
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    BertConfig,
    BertForMaskedLM,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
45
46
47
48
49
50
    CamembertConfig,
    CamembertForMaskedLM,
    CamembertTokenizer,
    DistilBertConfig,
    DistilBertForMaskedLM,
    DistilBertTokenizer,
51
52
53
54
55
56
    GPT2Config,
    GPT2LMHeadModel,
    GPT2Tokenizer,
    OpenAIGPTConfig,
    OpenAIGPTLMHeadModel,
    OpenAIGPTTokenizer,
57
    PreTrainedModel,
58
    PreTrainedTokenizer,
59
60
61
    RobertaConfig,
    RobertaForMaskedLM,
    RobertaTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
62
    get_linear_schedule_with_warmup,
63
)
64

65

Aymeric Augustin's avatar
Aymeric Augustin committed
66
67
try:
    from torch.utils.tensorboard import SummaryWriter
68
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
69
70
71
    from tensorboardX import SummaryWriter


72
logger = logging.getLogger(__name__)
73
74
75


MODEL_CLASSES = {
76
77
78
79
80
81
    "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
    "openai-gpt": (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    "bert": (BertConfig, BertForMaskedLM, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer),
82
83
84
}


85
class TextDataset(Dataset):
86
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path="train", block_size=512):
87
88
        assert os.path.isfile(file_path)
        directory, filename = os.path.split(file_path)
89
        cached_features_file = os.path.join(
90
            directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename
91
        )
92

Lysandre's avatar
Lysandre committed
93
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
94
            logger.info("Loading features from cached file %s", cached_features_file)
95
            with open(cached_features_file, "rb") as handle:
96
97
98
99
100
101
102
103
104
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
105

106
107
            for i in range(0, len(tokenized_text) - block_size + 1, block_size):  # Truncate in block of block_size
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
108
109
110
111
112
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
113
            with open(cached_features_file, "wb") as handle:
114
115
116
117
118
119
120
121
122
123
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item])


def load_and_cache_examples(args, tokenizer, evaluate=False):
124
    return TextDataset(
125
126
127
128
129
        tokenizer,
        args,
        file_path=args.eval_data_file if evaluate else args.train_data_file,
        block_size=args.block_size,
    )
130
131


132
133
134
135
136
137
138
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

139

140
141
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
    ordering_and_checkpoint_path = []
142

143
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
144
145

    for path in glob_checkpoints:
146
147
148
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
149
            regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
150
151
152
153
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
154
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    return checkpoints_sorted


def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
    if len(checkpoints_sorted) <= args.save_total_limit:
        return

jinoobaek-qz's avatar
jinoobaek-qz committed
169
170
171
172
173
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
174
175


176
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
177
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
178
    labels = inputs.clone()
179
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
180
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
181
182
183
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
184
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
185
    masked_indices = torch.bernoulli(probability_matrix).bool()
LysandreJik's avatar
LysandreJik committed
186
    labels[~masked_indices] = -100  # We only compute loss on masked tokens
187
188

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
189
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
190
191
192
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
193
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
194
195
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
196

197
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
198
    return inputs, labels
199

200

201
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
202
203
204
205
206
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
207
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
208
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
209
210
211
212
213
214
215
216

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
217
    no_decay = ["bias", "LayerNorm.weight"]
218
    optimizer_grouped_parameters = [
219
220
221
222
223
224
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
225
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
226
227
228
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
229
230

    # Check if saved optimizer or scheduler states exist
Julien Chaumond's avatar
Julien Chaumond committed
231
232
233
234
    if (
        args.model_name_or_path
        and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
        and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
235
    ):
236
        # Load in optimizer and scheduler states
237
238
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
239

240
241
242
243
244
245
246
247
248
249
250
251
252
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
253
254
255
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
256
257
258
259
260
261

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
262
263
264
265
266
267
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
268
269
270
271
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
272
273
274
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
275
    if args.model_name_or_path and os.path.exists(args.model_name_or_path):
276
277
278
279
280
281
282
283
284
285
286
287
288
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
289

290
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
291

292
    model_to_resize = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
293
294
    model_to_resize.resize_token_embeddings(len(tokenizer))

295
    model.zero_grad()
296
297
298
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
299
    set_seed(args)  # Added here for reproducibility
Bilal Khan's avatar
Bilal Khan committed
300
    for _ in train_iterator:
301
302
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
303

304
305
306
307
308
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

309
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
310
311
312
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
313
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
314
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
315
316

            if args.n_gpu > 1:
317
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
318
319
320
321
322
323
324
325
326
327
328
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
329
330
331
332
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
333
                optimizer.step()
334
                scheduler.step()  # Update learning rate schedule
335
336
337
338
339
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
340
341
342
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
343
344
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
345
346
347
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
348
349
350
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
351
                    checkpoint_prefix = "checkpoint"
352
                    # Save model checkpoint
353
                    output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
354
                    os.makedirs(output_dir, exist_ok=True)
355
356
357
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
358
                    model_to_save.save_pretrained(output_dir)
359
360
                    tokenizer.save_pretrained(output_dir)

361
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
362
363
                    logger.info("Saving model checkpoint to %s", output_dir)

364
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
365

366
367
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
Bilal Khan's avatar
Bilal Khan committed
368
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
369

370
371
372
373
374
375
376
377
378
379
380
381
382
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


383
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
384
385
386
387
388
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

389
390
    if args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir, exist_ok=True)
391
392
393

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
394
    eval_sampler = SequentialSampler(eval_dataset)
395
    eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
396

ronakice's avatar
ronakice committed
397
398
399
400
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

401
402
403
404
405
406
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
407
408
    model.eval()

409
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
410
411
412
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
413
414

        with torch.no_grad():
altsoph's avatar
altsoph committed
415
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
416
417
418
419
420
421
422
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

423
    result = {"perplexity": perplexity}
424

425
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
426
427
428
429
430
431
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

432
    return result
433
434
435
436
437


def main():
    parser = argparse.ArgumentParser()

438
    # Required parameters
439
440
441
442
443
444
445
446
447
    parser.add_argument(
        "--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
448
449
450
    parser.add_argument(
        "--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.",
    )
451

452
    # Other parameters
453
454
455
456
457
458
459
    parser.add_argument(
        "--eval_data_file",
        default=None,
        type=str,
        help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
    )

Julien Chaumond's avatar
Julien Chaumond committed
460
461
462
463
    parser.add_argument(
        "--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir"
    )
    
464
465
    parser.add_argument(
        "--model_name_or_path",
466
        default=None,
467
        type=str,
468
        help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
469
470
471
472
473
474
475
476
477
478
479
    )

    parser.add_argument(
        "--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
    )
    parser.add_argument(
        "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
    )

    parser.add_argument(
        "--config_name",
480
        default=None,
481
        type=str,
482
        help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.",
483
484
485
    )
    parser.add_argument(
        "--tokenizer_name",
486
487
488
489
        default=None,
        type=str,
        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.",
    )
490
491
    parser.add_argument(
        "--cache_dir",
492
        default=None,
493
        type=str,
Oren Amsalem's avatar
Oren Amsalem committed
494
        help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)",
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    )
    parser.add_argument(
        "--block_size",
        default=-1,
        type=int,
        help="Optional input sequence length after tokenization."
        "The training dataset will be truncated in block of this size for training."
        "Default to the model max input length for single sentence inputs (take into account special tokens).",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=None,
        help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
    )
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
572
573
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
574
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
575
        raise ValueError(
576
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
577
578
            "flag (masked language modeling)."
        )
579
    if args.eval_data_file is None and args.do_eval:
580
581
582
583
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
584
585
586
    if args.should_continue:
        sorted_checkpoints = _sorted_checkpoints(args)
        if len(sorted_checkpoints) == 0:
Julien Chaumond's avatar
Julien Chaumond committed
587
            raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
588
589
        else:
            args.model_name_or_path = sorted_checkpoints[-1]
590
591
592
593
594
595
596
597
598
599
600
601

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
602
603
604
605
606

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
607

608
609
610
611
612
613
614
615
616
617
618
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
619
        torch.distributed.init_process_group(backend="nccl")
620
621
622
623
        args.n_gpu = 1
    args.device = device

    # Setup logging
624
625
626
627
628
629
630
631
632
633
634
635
636
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
637
638
639
640
641
642

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
643
644
645
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
646
647
648
649
650
651
652
653
654
655
656
657
658

    if args.config_name:
        config = config_class.from_pretrained(args.config_name, cache_dir=args.cache_dir)
    elif args.model_name_or_path:
        config = config_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
    else:
        config = config_class()

    if args.tokenizer_name:
        tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
    elif args.model_name_or_path:
        tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
    else:
659
660
661
        raise ValueError(
            "You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name".format(tokenizer_class.__name__)
662
663
        )

664
    if args.block_size <= 0:
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
        args.block_size = tokenizer.max_len_single_sentence
        # Our input block size will be the max possible for the model
    else:
        args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)

    if args.model_name_or_path:
        model = model_class.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
            cache_dir=args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
        model = model_class(config=config)

681
    model.to(args.device)
682
683

    if args.local_rank == 0:
684
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
685
686
687
688
689

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
690
691
692
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

693
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
694
695
696
697

        if args.local_rank == 0:
            torch.distributed.barrier()

698
699
700
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

701
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
702
703
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
704
705
        if args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir, exist_ok=True)
706
707
708
709

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
710
711
712
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
713
714
715
716
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
717
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
718
719
720

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
721
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
722
723
724
725
726
727
728
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
729
730
731
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
732
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
733
734
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
735
736
737
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

738
739
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
740
            result = evaluate(args, model, tokenizer, prefix=prefix)
741
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
742
743
744
745
746
747
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
748
    main()