run_lm_finetuning.py 33.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
"""
LysandreJik's avatar
LysandreJik committed
17
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
18
19
20
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""
21
22
23
24
25
26


import argparse
import glob
import logging
import os
27
import pickle
28
import random
jinoobaek-qz's avatar
jinoobaek-qz committed
29
30
import re
import shutil
31
from typing import Dict, List, Tuple
32
33
34

import numpy as np
import torch
35
from torch.nn.utils.rnn import pad_sequence
Aymeric Augustin's avatar
Aymeric Augustin committed
36
from torch.utils.data import DataLoader, Dataset, RandomSampler, SequentialSampler
37
38
39
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

40
41
42
43
44
45
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    BertConfig,
    BertForMaskedLM,
    BertTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
46
47
48
49
50
51
    CamembertConfig,
    CamembertForMaskedLM,
    CamembertTokenizer,
    DistilBertConfig,
    DistilBertForMaskedLM,
    DistilBertTokenizer,
52
53
54
55
56
57
    GPT2Config,
    GPT2LMHeadModel,
    GPT2Tokenizer,
    OpenAIGPTConfig,
    OpenAIGPTLMHeadModel,
    OpenAIGPTTokenizer,
58
    PreTrainedModel,
59
    PreTrainedTokenizer,
60
61
62
    RobertaConfig,
    RobertaForMaskedLM,
    RobertaTokenizer,
Aymeric Augustin's avatar
Aymeric Augustin committed
63
    get_linear_schedule_with_warmup,
64
)
65

66

Aymeric Augustin's avatar
Aymeric Augustin committed
67
68
try:
    from torch.utils.tensorboard import SummaryWriter
69
except ImportError:
Aymeric Augustin's avatar
Aymeric Augustin committed
70
71
72
    from tensorboardX import SummaryWriter


73
logger = logging.getLogger(__name__)
74
75
76


MODEL_CLASSES = {
77
78
79
80
81
82
    "gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),
    "openai-gpt": (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),
    "bert": (BertConfig, BertForMaskedLM, BertTokenizer),
    "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
    "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
    "camembert": (CamembertConfig, CamembertForMaskedLM, CamembertTokenizer),
83
84
85
}


86
class TextDataset(Dataset):
87
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
88
89
        assert os.path.isfile(file_path)
        directory, filename = os.path.split(file_path)
90
        cached_features_file = os.path.join(
91
            directory, args.model_type + "_cached_lm_" + str(block_size) + "_" + filename
92
        )
93

Lysandre's avatar
Lysandre committed
94
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
95
            logger.info("Loading features from cached file %s", cached_features_file)
96
            with open(cached_features_file, "rb") as handle:
97
98
99
100
101
102
103
104
105
                self.examples = pickle.load(handle)
        else:
            logger.info("Creating features from dataset file at %s", directory)

            self.examples = []
            with open(file_path, encoding="utf-8") as f:
                text = f.read()

            tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
106

107
108
            for i in range(0, len(tokenized_text) - block_size + 1, block_size):  # Truncate in block of block_size
                self.examples.append(tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]))
109
110
111
112
113
            # Note that we are loosing the last truncated example here for the sake of simplicity (no padding)
            # If your dataset is small, first you should loook for a bigger one :-) and second you
            # can change this behavior by adding (model specific) padding.

            logger.info("Saving features into cached file %s", cached_features_file)
114
            with open(cached_features_file, "wb") as handle:
115
116
117
118
119
120
121
122
123
                pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, item):
        return torch.tensor(self.examples[item])


124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class LineByLineTextDataset(Dataset):
    def __init__(self, tokenizer: PreTrainedTokenizer, args, file_path: str, block_size=512):
        assert os.path.isfile(file_path)
        # Here, we do not cache the features, operating under the assumption
        # that we will soon use fast multithreaded tokenizers from the
        # `tokenizers` repo everywhere =)
        logger.info("Creating features from dataset file at %s", file_path)

        with open(file_path, encoding="utf-8") as f:
            lines = [line for line in f.read().splitlines() if len(line) > 0]

        self.examples = tokenizer.batch_encode_plus(lines, max_length=block_size)["input_ids"]

    def __len__(self):
        return len(self.examples)

    def __getitem__(self, i):
        return torch.tensor(self.examples[i])


144
def load_and_cache_examples(args, tokenizer, evaluate=False):
145
146
147
148
149
    file_path = args.eval_data_file if evaluate else args.train_data_file
    if args.line_by_line:
        return LineByLineTextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
    else:
        return TextDataset(tokenizer, args, file_path=file_path, block_size=args.block_size)
150
151


152
153
154
155
156
157
158
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

159

160
161
def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]:
    ordering_and_checkpoint_path = []
162

163
    glob_checkpoints = glob.glob(os.path.join(args.output_dir, "{}-*".format(checkpoint_prefix)))
jinoobaek-qz's avatar
jinoobaek-qz committed
164
165

    for path in glob_checkpoints:
166
167
168
        if use_mtime:
            ordering_and_checkpoint_path.append((os.path.getmtime(path), path))
        else:
169
            regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path)
170
171
172
173
            if regex_match and regex_match.groups():
                ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path))

    checkpoints_sorted = sorted(ordering_and_checkpoint_path)
jinoobaek-qz's avatar
jinoobaek-qz committed
174
    checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted]
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    return checkpoints_sorted


def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None:
    if not args.save_total_limit:
        return
    if args.save_total_limit <= 0:
        return

    # Check if we should delete older checkpoint(s)
    checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime)
    if len(checkpoints_sorted) <= args.save_total_limit:
        return

jinoobaek-qz's avatar
jinoobaek-qz committed
189
190
191
192
193
    number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit)
    checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete]
    for checkpoint in checkpoints_to_be_deleted:
        logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint))
        shutil.rmtree(checkpoint)
jinoobaek-qz's avatar
jinoobaek-qz committed
194
195


196
def mask_tokens(inputs: torch.Tensor, tokenizer: PreTrainedTokenizer, args) -> Tuple[torch.Tensor, torch.Tensor]:
197
    """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """
198
    labels = inputs.clone()
199
    # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa)
200
    probability_matrix = torch.full(labels.shape, args.mlm_probability)
201
202
203
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    ]
204
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask, dtype=torch.bool), value=0.0)
205
206
    padding_mask = labels.eq(tokenizer.pad_token_id)
    probability_matrix.masked_fill_(padding_mask, value=0.0)
207
    masked_indices = torch.bernoulli(probability_matrix).bool()
LysandreJik's avatar
LysandreJik committed
208
    labels[~masked_indices] = -100  # We only compute loss on masked tokens
209
210

    # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
thomwolf's avatar
thomwolf committed
211
    indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
212
213
214
    inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token)

    # 10% of the time, we replace masked input tokens with random word
thomwolf's avatar
thomwolf committed
215
    indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
216
217
    random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]
218

219
    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
220
    return inputs, labels
221

222

223
def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]:
224
225
226
227
228
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
229
230
231
232

    def collate(examples: List[torch.Tensor]):
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

thomwolf's avatar
thomwolf committed
233
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
234
235
236
    train_dataloader = DataLoader(
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate
    )
237
238
239
240
241
242
243
244

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
245
    no_decay = ["bias", "LayerNorm.weight"]
246
    optimizer_grouped_parameters = [
247
248
249
250
251
252
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
253
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
254
255
256
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
257
258

    # Check if saved optimizer or scheduler states exist
Julien Chaumond's avatar
Julien Chaumond committed
259
260
261
262
    if (
        args.model_name_or_path
        and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt"))
        and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt"))
263
    ):
264
        # Load in optimizer and scheduler states
265
266
        optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
267

268
269
270
271
272
273
274
275
276
277
278
279
280
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
281
282
283
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
284
285
286
287
288
289

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
290
291
292
293
294
295
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
296
297
298
299
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
300
301
302
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
303
    if args.model_name_or_path and os.path.exists(args.model_name_or_path):
304
305
306
307
308
309
310
311
312
313
314
315
316
        try:
            # set global_step to gobal_step of last saved checkpoint from model path
            checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0]
            global_step = int(checkpoint_suffix)
            epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
            steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)

            logger.info("  Continuing training from checkpoint, will skip to saved global_step")
            logger.info("  Continuing training from epoch %d", epochs_trained)
            logger.info("  Continuing training from global step %d", global_step)
            logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
        except ValueError:
            logger.info("  Starting fine-tuning.")
317

318
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
319

320
    model_to_resize = model.module if hasattr(model, "module") else model  # Take care of distributed/parallel training
thomwolf's avatar
thomwolf committed
321
322
    model_to_resize.resize_token_embeddings(len(tokenizer))

323
    model.zero_grad()
324
325
326
    train_iterator = trange(
        epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]
    )
327
    set_seed(args)  # Added here for reproducibility
Bilal Khan's avatar
Bilal Khan committed
328
    for _ in train_iterator:
329
330
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
331

332
333
334
335
336
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

337
            inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
338
339
340
            inputs = inputs.to(args.device)
            labels = labels.to(args.device)
            model.train()
341
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
342
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
343
344

            if args.n_gpu > 1:
345
                loss = loss.mean()  # mean() to average on multi-gpu parallel training
346
347
348
349
350
351
352
353
354
355
356
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
357
358
359
360
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
361
                optimizer.step()
362
                scheduler.step()  # Update learning rate schedule
363
364
365
366
367
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
368
369
370
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
371
372
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
373
374
375
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
376
377
378
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
379
                    checkpoint_prefix = "checkpoint"
380
                    # Save model checkpoint
381
                    output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step))
382
                    os.makedirs(output_dir, exist_ok=True)
383
384
385
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
386
                    model_to_save.save_pretrained(output_dir)
387
388
                    tokenizer.save_pretrained(output_dir)

389
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
390
391
                    logger.info("Saving model checkpoint to %s", output_dir)

392
                    _rotate_checkpoints(args, checkpoint_prefix)
jinoobaek-qz's avatar
jinoobaek-qz committed
393

394
395
                    torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                    torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
Bilal Khan's avatar
Bilal Khan committed
396
                    logger.info("Saving optimizer and scheduler states to %s", output_dir)
397

398
399
400
401
402
403
404
405
406
407
408
409
410
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


411
def evaluate(args, model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix="") -> Dict:
412
413
414
415
416
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_output_dir = args.output_dir

    eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)

417
418
    if args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir, exist_ok=True)
419
420
421

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
422
423
424
425

    def collate(examples: List[torch.Tensor]):
        return pad_sequence(examples, batch_first=True, padding_value=tokenizer.pad_token_id)

426
    eval_sampler = SequentialSampler(eval_dataset)
427
428
429
    eval_dataloader = DataLoader(
        eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size, collate_fn=collate
    )
430

ronakice's avatar
ronakice committed
431
432
433
434
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

435
436
437
438
439
440
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
441
442
    model.eval()

443
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
altsoph's avatar
altsoph committed
444
445
446
        inputs, labels = mask_tokens(batch, tokenizer, args) if args.mlm else (batch, batch)
        inputs = inputs.to(args.device)
        labels = labels.to(args.device)
447
448

        with torch.no_grad():
altsoph's avatar
altsoph committed
449
            outputs = model(inputs, masked_lm_labels=labels) if args.mlm else model(inputs, labels=labels)
450
451
452
453
454
455
456
            lm_loss = outputs[0]
            eval_loss += lm_loss.mean().item()
        nb_eval_steps += 1

    eval_loss = eval_loss / nb_eval_steps
    perplexity = torch.exp(torch.tensor(eval_loss))

457
    result = {"perplexity": perplexity}
458

459
    output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
460
461
462
463
464
465
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

466
    return result
467
468
469
470
471


def main():
    parser = argparse.ArgumentParser()

472
    # Required parameters
473
474
475
476
477
478
479
480
481
    parser.add_argument(
        "--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file)."
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
482
483
484
    parser.add_argument(
        "--model_type", type=str, required=True, help="The model architecture to be trained or fine-tuned.",
    )
485

486
    # Other parameters
487
488
489
490
491
492
    parser.add_argument(
        "--eval_data_file",
        default=None,
        type=str,
        help="An optional input evaluation data file to evaluate the perplexity on (a text file).",
    )
493
494
495
496
497
    parser.add_argument(
        "--line_by_line",
        action="store_true",
        help="Whether distinct lines of text in the dataset are to be handled as distinct sequences.",
    )
Julien Chaumond's avatar
Julien Chaumond committed
498
499
500
    parser.add_argument(
        "--should_continue", action="store_true", help="Whether to continue from latest checkpoint in output_dir"
    )
501
502
    parser.add_argument(
        "--model_name_or_path",
503
        default=None,
504
        type=str,
505
        help="The model checkpoint for weights initialization. Leave None if you want to train a model from scratch.",
506
507
508
509
510
511
512
513
514
515
516
    )

    parser.add_argument(
        "--mlm", action="store_true", help="Train with masked-language modeling loss instead of language modeling."
    )
    parser.add_argument(
        "--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss"
    )

    parser.add_argument(
        "--config_name",
517
        default=None,
518
        type=str,
519
        help="Optional pretrained config name or path if not the same as model_name_or_path. If both are None, initialize a new config.",
520
521
522
    )
    parser.add_argument(
        "--tokenizer_name",
523
524
525
526
        default=None,
        type=str,
        help="Optional pretrained tokenizer name or path if not the same as model_name_or_path. If both are None, initialize a new tokenizer.",
    )
527
528
    parser.add_argument(
        "--cache_dir",
529
        default=None,
530
        type=str,
Oren Amsalem's avatar
Oren Amsalem committed
531
        help="Optional directory to store the pre-trained models downloaded from s3 (instead of the default one)",
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
    )
    parser.add_argument(
        "--block_size",
        default=-1,
        type=int,
        help="Optional input sequence length after tokenization."
        "The training dataset will be truncated in block of this size for training."
        "Default to the model max input length for single sentence inputs (take into account special tokens).",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--save_total_limit",
        type=int,
        default=None,
        help="Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default",
    )
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
609
610
    args = parser.parse_args()

maxvidal's avatar
maxvidal committed
611
    if args.model_type in ["bert", "roberta", "distilbert", "camembert"] and not args.mlm:
612
        raise ValueError(
613
            "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the --mlm "
614
615
            "flag (masked language modeling)."
        )
616
    if args.eval_data_file is None and args.do_eval:
617
618
619
620
        raise ValueError(
            "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file "
            "or remove the --do_eval argument."
        )
621
622
623
    if args.should_continue:
        sorted_checkpoints = _sorted_checkpoints(args)
        if len(sorted_checkpoints) == 0:
Julien Chaumond's avatar
Julien Chaumond committed
624
            raise ValueError("Used --should_continue but no checkpoint was found in --output_dir.")
625
626
        else:
            args.model_name_or_path = sorted_checkpoints[-1]
627
628
629
630
631
632
633
634
635
636
637
638

    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
639
640
641
642
643

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
644

645
646
647
648
649
650
651
652
653
654
655
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
656
        torch.distributed.init_process_group(backend="nccl")
657
658
659
660
        args.n_gpu = 1
    args.device = device

    # Setup logging
661
662
663
664
665
666
667
668
669
670
671
672
673
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
674
675
676
677
678
679

    # Set seed
    set_seed(args)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
680
681
682
        torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocab

    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
683
684
685
686
687
688
689
690
691
692
693
694
695

    if args.config_name:
        config = config_class.from_pretrained(args.config_name, cache_dir=args.cache_dir)
    elif args.model_name_or_path:
        config = config_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
    else:
        config = config_class()

    if args.tokenizer_name:
        tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, cache_dir=args.cache_dir)
    elif args.model_name_or_path:
        tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, cache_dir=args.cache_dir)
    else:
696
697
698
        raise ValueError(
            "You are instantiating a new {} tokenizer. This is not supported, but you can do it from another script, save it,"
            "and load it from here, using --tokenizer_name".format(tokenizer_class.__name__)
699
700
        )

701
    if args.block_size <= 0:
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        args.block_size = tokenizer.max_len_single_sentence
        # Our input block size will be the max possible for the model
    else:
        args.block_size = min(args.block_size, tokenizer.max_len_single_sentence)

    if args.model_name_or_path:
        model = model_class.from_pretrained(
            args.model_name_or_path,
            from_tf=bool(".ckpt" in args.model_name_or_path),
            config=config,
            cache_dir=args.cache_dir,
        )
    else:
        logger.info("Training new model from scratch")
        model = model_class(config=config)

718
    model.to(args.device)
719
720

    if args.local_rank == 0:
721
        torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocab
722
723
724
725
726

    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
727
728
729
        if args.local_rank not in [-1, 0]:
            torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache

730
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
731
732
733
734

        if args.local_rank == 0:
            torch.distributed.barrier()

735
736
737
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

738
    # Saving best-practices: if you use save_pretrained for the model and tokenizer, you can reload them using from_pretrained()
739
740
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
741
742
        if args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir, exist_ok=True)
743
744
745
746

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
747
748
749
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
750
751
752
753
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
754
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
755
756
757

        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
758
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
759
760
761
762
763
764
765
        model.to(args.device)

    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
766
767
768
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
769
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
770
771
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
772
773
774
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split("/")[-1] if checkpoint.find("checkpoint") != -1 else ""

775
776
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
777
            result = evaluate(args, model, tokenizer, prefix=prefix)
778
            result = dict((k + "_{}".format(global_step), v) for k, v in result.items())
779
780
781
782
783
784
            results.update(result)

    return results


if __name__ == "__main__":
altsoph's avatar
altsoph committed
785
    main()