test_pipelines_token_classification.py 40.7 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
import unittest

17
import numpy as np
18

19
20
21
22
23
24
25
26
27
from transformers import (
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
    AutoModelForTokenClassification,
    AutoTokenizer,
    TokenClassificationPipeline,
    pipeline,
)
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler
28
29
30
31
32
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_torch,
33
    require_torch_accelerator,
34
    slow,
35
    torch_device,
36
)
37

38
from .test_pipelines_common import ANY
39

40
41

VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]]
42

43
44
45
# These 2 model types require different inputs than those of the usual text models.
_TO_SKIP = {"LayoutLMv2Config", "LayoutLMv3Config"}

46

47
@is_pipeline_test
48
class TokenClassificationPipelineTests(unittest.TestCase):
49
50
    model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
    tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
51

52
    if model_mapping is not None:
53
        model_mapping = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
54
    if tf_model_mapping is not None:
55
56
57
        tf_model_mapping = {
            config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
        }
58

59
    def get_test_pipeline(self, model, tokenizer, processor):
60
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
61
62
63
64
65
        return token_classifier, ["A simple string", "A simple string that is quite a bit longer"]

    def run_pipeline_test(self, token_classifier, _):
        model = token_classifier.model
        tokenizer = token_classifier.tokenizer
Matt's avatar
Matt committed
66
67
        if not tokenizer.is_fast:
            return  # Slow tokenizers do not return offsets mappings, so this test will fail
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "index": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
        outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"])
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), 2)
        n = len(outputs[0])
        m = len(outputs[1])
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        self.assertEqual(
            nested_simplify(outputs),
            [
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(n)
                ],
                [
                    {
                        "entity": ANY(str),
                        "score": ANY(float),
                        "start": ANY(int),
                        "end": ANY(int),
                        "index": ANY(int),
                        "word": ANY(str),
                    }
                    for i in range(m)
                ],
            ],
        )
119

120
        self.run_aggregation_strategy(model, tokenizer)
121

122
123
    def run_aggregation_strategy(self, model, tokenizer):
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple")
124
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
141

142
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first")
143
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
160

161
        token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max")
162
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX)
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
179

180
181
182
        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average"
        )
183
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE)
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        outputs = token_classifier("A simple string")
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertEqual(
            nested_simplify(outputs),
            [
                {
                    "entity_group": ANY(str),
                    "score": ANY(float),
                    "start": ANY(int),
                    "end": ANY(int),
                    "word": ANY(str),
                }
                for i in range(n)
            ],
        )
200

201
202
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True)
203
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE)
204
205
206
207
        with self.assertWarns(UserWarning):
            token_classifier = pipeline(
                task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True
            )
208
        self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST)
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    @slow
    @require_torch
    def test_chunking(self):
        NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        tokenizer.model_max_length = 10
        stride = 5
        sentence = (
            "Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. "
            "The company, based in New York City was founded in 2016 by French entrepreneurs Cl茅ment Delangue, Julien Chaumond, and Thomas Wolf."
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

        token_classifier = TokenClassificationPipeline(
            model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride
        )
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
                {"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30},
                {"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144},
                {"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174},
                {"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205},
                {"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222},
                {"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239},
            ],
        )

    @require_torch
    def test_chunking_fast(self):
        # Note: We cannot run the test on "conflicts" on the chunking.
        # The problem is that the model is random, and thus the results do heavily
        # depend on the chunking, so we cannot expect "abcd" and "bcd" to find
        # the same entities. We defer to slow tests for this.
        pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification")
        sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs"

        results = pipe(sentence, aggregation_strategy="first")
        # This is what this random model gives on the full sentence
        self.assertEqual(
            nested_simplify(results),
            [
                # This is 2 actual tokens
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

        # This will force the tokenizer to split after "city was".
        pipe.tokenizer.model_max_length = 12
        self.assertEqual(
            pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)),
            "[CLS] the company, based in new york city was [SEP]",
        )

        stride = 4
        results = pipe(sentence, aggregation_strategy="first", stride=stride)
        self.assertEqual(
            nested_simplify(results),
            [
                {"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"},
                # This is an extra entity found by this random model, but at least both original
                # entities are there
                {"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"},
                {"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"},
            ],
        )

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    @require_torch
    @slow
    def test_spanish_bert(self):
        # https://github.com/huggingface/transformers/pull/4987
        NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
        sentence = """Consuelo Ara煤jo Noguera, ministra de cultura del presidente Andr茅s Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses."""

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1},
                {"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2},
                {"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4},
                {"entity_group": "PER", "score": 0.966, "word": "##uelo Ara煤jo Noguera", "start": 4, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.999, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114},
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
                {"entity_group": "PER", "score": 0.966, "word": "Consuelo Ara煤jo Noguera", "start": 0, "end": 23},
                {"entity_group": "PER", "score": 1.0, "word": "Andr茅s Pastrana", "start": 60, "end": 75},
                {"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114},
            ],
        )

395
    @require_torch_accelerator
396
    @slow
397
    def test_accelerator(self):
398
399
400
        sentence = "This is dummy sentence"
        ner = pipeline(
            "token-classification",
401
            device=torch_device,
402
403
404
405
406
407
            aggregation_strategy=AggregationStrategy.SIMPLE,
        )

        output = ner(sentence)
        self.assertEqual(nested_simplify(output), [])

408
409
410
411
412
413
414
    @require_torch
    @slow
    def test_dbmdz_english(self):
        # Other sentence
        NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english"
        model = AutoModelForTokenClassification.from_pretrained(NER_MODEL)
        tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True)
Yulv-git's avatar
Yulv-git committed
415
        sentence = """Enzo works at the UN"""
416
417
418
419
420
        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer)
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
421
422
423
                {"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1},
                {"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2},
                {"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6},
424
425
426
427
428
429
430
431
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
432
433
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
434
435
436
437
438
439
440
441
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
442
443
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
444
445
446
447
448
449
450
451
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output[:3]),
            [
452
453
                {"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
454
455
456
457
458
459
460
461
            ],
        )

        token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average")
        output = token_classifier(sentence)
        self.assertEqual(
            nested_simplify(output),
            [
462
463
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20},
464
465
466
            ],
        )

467
468
469
470
471
472
473
474
475
476
477
478
479
    @require_torch
    @slow
    def test_aggregation_strategy_byte_level_tokenizer(self):
        sentence = "Groenlinks praat over Schiphol."
        ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"},
                {"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31},
            ],
        )

480
481
482
483
484
485
486
487
488
    @require_torch
    def test_aggregation_strategy_no_b_i_prefix(self):
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"}
        example = [
            {
489
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359]),  # fmt : skip
490
491
492
493
494
495
496
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
497
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891]),  # fmt : skip
498
499
500
501
502
503
504
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
505
                "scores": np.array([0, 0, 0, 0.9986497163772583, 0]),  # fmt : skip
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

529
530
    @require_torch
    def test_aggregation_strategy(self):
531
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
532
533
534
535
536
537
538
539
540
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
541
                "scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]),  # fmt : skip
542
543
544
545
546
547
548
                "index": 1,
                "is_subword": False,
                "word": "En",
                "start": 0,
                "end": 2,
            },
            {
549
                "scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]),  # fmt : skip
550
551
552
553
554
555
556
                "index": 2,
                "is_subword": True,
                "word": "##zo",
                "start": 2,
                "end": 4,
            },
            {
557
                "scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0]),  # fmt : skip
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
                "index": 7,
                "word": "UN",
                "is_subword": False,
                "start": 11,
                "end": 13,
            },
        ]
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)),
            [
                {"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1},
                {"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2},
                {"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)),
            [
                {"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [
                {"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4},
                {"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13},
            ],
        )

    @require_torch
    def test_aggregation_strategy_example2(self):
604
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
        # Just to understand scores indexes in this test
        self.assertEqual(
            token_classifier.model.config.id2label,
            {0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"},
        )
        example = [
            {
                # Necessary for AVERAGE
                "scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]),
                "is_subword": False,
                "index": 1,
                "word": "Ra",
                "start": 0,
                "end": 2,
            },
            {
                "scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]),
                "is_subword": True,
                "word": "##ma",
                "start": 2,
                "end": 4,
                "index": 2,
            },
            {
                # 4th score will have the higher average
                # 4th score is B-PER for this model
                # It's does not correspond to any of the subtokens.
                "scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]),
                "is_subword": True,
                "word": "##zotti",
                "start": 11,
                "end": 13,
                "index": 3,
            },
        ]
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.NONE),
            [
                {"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1},
                {"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2},
                {"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3},
            ],
        )

        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.FIRST),
            [{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            token_classifier.aggregate(example, AggregationStrategy.MAX),
            [{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}],
        )
        self.assertEqual(
            nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)),
            [{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}],
        )

664
665
666
667
668
669
670
671
672
673
674
675
676
677
    @require_torch
    @slow
    def test_aggregation_strategy_offsets_with_leading_space(self):
        sentence = "We're from New York"
        model_name = "brandon25/deberta-base-finetuned-ner"
        ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max")
        self.assertEqual(
            nested_simplify(ner(sentence)),
            [
                {"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10},
                {"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19},
            ],
        )

678
679
    @require_torch
    def test_gather_pre_entities(self):
680
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
681
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
682
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

        sentence = "Hello there"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            truncation=True,
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        # First element in [CLS]
        scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]])

700
        pre_entities = token_classifier.gather_pre_entities(
701
702
703
704
705
706
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.NONE,
707
        )
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        self.assertEqual(
            nested_simplify(pre_entities),
            [
                {"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1},
                {
                    "word": "there",
                    "scores": [0.8, 0.1, 0.1],
                    "index": 2,
                    "start": 6,
                    "end": 11,
                    "is_subword": False,
                },
            ],
        )
722

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    @require_torch
    def test_word_heuristic_leading_space(self):
        model_name = "hf-internal-testing/tiny-random-deberta-v2"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
        token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt")

        sentence = "I play the theremin"

        tokens = tokenizer(
            sentence,
            return_attention_mask=False,
            return_tensors="pt",
            return_special_tokens_mask=True,
            return_offsets_mapping=True,
        )
        offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0]
        special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0]
        input_ids = tokens["input_ids"].numpy()[0]
        scores = np.array([[1, 0] for _ in input_ids])  # values irrelevant for heuristic

        pre_entities = token_classifier.gather_pre_entities(
            sentence,
            input_ids,
            scores,
            offset_mapping,
            special_tokens_mask,
            aggregation_strategy=AggregationStrategy.FIRST,
        )

        # ensure expected tokenization and correct is_subword values
        self.assertEqual(
            [(entity["word"], entity["is_subword"]) for entity in pre_entities],
            [("鈻両", False), ("鈻乸lay", False), ("鈻乼he", False), ("鈻乼here", False), ("min", True)],
        )

758
759
    @require_tf
    def test_tf_only(self):
760
        model_name = "hf-internal-testing/tiny-random-bert-tf-only"  # This model only has a TensorFlow version
761
        # We test that if we don't specificy framework='tf', it gets detected automatically
762
        token_classifier = pipeline(task="ner", model=model_name)
763
        self.assertEqual(token_classifier.framework, "tf")
764
765

    @require_tf
766
    def test_small_model_tf(self):
767
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
768
769
770
771
772
773
774
775
776
        token_classifier = pipeline(task="token-classification", model=model_name, framework="tf")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
777

778
779
    @require_torch
    def test_no_offset_tokenizer(self):
780
781
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
782
783
784
785
786
787
788
789
790
791
        token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None},
            ],
        )

792
793
    @require_torch
    def test_small_model_pt(self):
794
        model_name = "hf-internal-testing/tiny-bert-for-token-classification"
795
796
797
798
799
800
801
802
803
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
            ],
        )
804

805
806
807
808
809
810
811
812
813
        token_classifier = pipeline(
            task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"]
        )
        outputs = token_classifier("This is a test !")
        self.assertEqual(
            nested_simplify(outputs),
            [],
        )

814
815
816
817
818
819
820
821
822
823
824
825
826
        token_classifier = pipeline(task="token-classification", model=model_name, framework="pt")
        # Overload offset_mapping
        outputs = token_classifier(
            "This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)]
        )
        self.assertEqual(
            nested_simplify(outputs),
            [
                {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1},
                {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2},
            ],
        )

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        # Batch size does not affect outputs (attention_mask are required)
        sentences = ["This is a test !", "Another test this is with longer sentence"]
        outputs = token_classifier(sentences)
        outputs_batched = token_classifier(sentences, batch_size=2)
        # Batching does not make a difference in predictions
        self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs))
        self.assertEqual(
            nested_simplify(outputs_batched),
            [
                [
                    {"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4},
                    {"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7},
                ],
                [],
            ],
        )

844
    @require_torch
845
    def test_pt_ignore_subwords_slow_tokenizer_raises(self):
846
        model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english"
847
848
849
850
851
852
853
854
855
856
        tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)

        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST)
        with self.assertRaises(ValueError):
            pipeline(
                task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE
            )
        with self.assertRaises(ValueError):
            pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX)
857

858
859
860
    @slow
    @require_torch
    def test_simple(self):
861
        token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True)
862
863
        sentence = "Hello Sarah Jessica Parker who Jessica lives in New York"
        sentence2 = "This is a simple test"
864
        output = token_classifier(sentence)
865

866
        output_ = nested_simplify(output)
867
868

        self.assertEqual(
869
            output_,
870
871
872
873
874
875
876
877
878
879
880
881
882
            [
                {
                    "entity_group": "PER",
                    "score": 0.996,
                    "word": "Sarah Jessica Parker",
                    "start": 6,
                    "end": 26,
                },
                {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
            ],
        )

883
        output = token_classifier([sentence, sentence2])
884
        output_ = nested_simplify(output)
885
886
887
888
889
890
891
892
893
894
895
896
897

        self.assertEqual(
            output_,
            [
                [
                    {"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26},
                    {"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38},
                    {"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56},
                ],
                [],
            ],
        )

898
899
900
901
902
903
904
905
906
907
908
909

class TokenClassificationArgumentHandlerTestCase(unittest.TestCase):
    def setUp(self):
        self.args_parser = TokenClassificationArgumentHandler()

    def test_simple(self):
        string = "This is a simple input"

        inputs, offset_mapping = self.args_parser(string)
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, None)

910
        inputs, offset_mapping = self.args_parser([string, string])
911
912
913
914
915
916
917
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, None)

        inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)])
        self.assertEqual(inputs, [string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]])

918
919
920
        inputs, offset_mapping = self.args_parser(
            [string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]
        )
921
922
923
924
925
926
        self.assertEqual(inputs, [string, string])
        self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

    def test_errors(self):
        string = "This is a simple input"

927
928
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
929
930
            self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]])

931
932
        # 2 sentences, 1 offset_mapping, args
        with self.assertRaises(TypeError):
933
934
            self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)])

935
936
937
938
939
940
941
942
        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]])

        # 2 sentences, 1 offset_mapping, input_list
        with self.assertRaises(ValueError):
            self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)])

943
944
945
946
947
        # 1 sentences, 2 offset_mapping
        with self.assertRaises(ValueError):
            self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]])

        # 0 sentences, 1 offset_mapping
948
        with self.assertRaises(TypeError):
949
            self.args_parser(offset_mapping=[[(0, 1), (1, 2)]])