test_pipelines_automatic_speech_recognition.py 84.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import time
16
17
import unittest

18
import numpy as np
19
import pytest
20
from datasets import Audio, load_dataset
Nicolas Patry's avatar
Nicolas Patry committed
21
from huggingface_hub import hf_hub_download, snapshot_download
22

23
24
25
26
from transformers import (
    MODEL_FOR_CTC_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    AutoFeatureExtractor,
27
28
    AutoModelForCausalLM,
    AutoModelForSpeechSeq2Seq,
29
    AutoProcessor,
30
31
32
    AutoTokenizer,
    Speech2TextForConditionalGeneration,
    Wav2Vec2ForCTC,
Arthur's avatar
Arthur committed
33
    WhisperForConditionalGeneration,
34
)
35
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
36
from transformers.pipelines.audio_utils import chunk_bytes_iter
37
from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter
38
from transformers.testing_utils import (
39
    is_pipeline_test,
40
41
    is_torch_available,
    nested_simplify,
Nicolas Patry's avatar
Nicolas Patry committed
42
    require_pyctcdecode,
43
44
    require_tf,
    require_torch,
45
    require_torch_accelerator,
46
47
    require_torchaudio,
    slow,
48
    torch_device,
49
)
50

51
from .test_pipelines_common import ANY
52
53


54
55
56
57
if is_torch_available():
    import torch


58
# We can't use this mixin because it assumes TF support.
59
60
61
# from .test_pipelines_common import CustomInputPipelineCommonMixin


62
@is_pipeline_test
63
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
64
65
66
67
    model_mapping = dict(
        (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
        + (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
    )
68

69
    def get_test_pipeline(self, model, tokenizer, processor):
70
71
72
        if tokenizer is None:
            # Side effect of no Fast Tokenizer class for these model, so skipping
            # But the slow tokenizer test should still run as they're quite small
amyeroberts's avatar
amyeroberts committed
73
            self.skipTest(reason="No tokenizer available")
74
75

        speech_recognizer = AutomaticSpeechRecognitionPipeline(
76
            model=model, tokenizer=tokenizer, feature_extractor=processor
77
78
79
80
81
82
83
84
85
86
87
88
        )

        # test with a raw waveform
        audio = np.zeros((34000,))
        audio2 = np.zeros((14000,))
        return speech_recognizer, [audio, audio2]

    def run_pipeline_test(self, speech_recognizer, examples):
        audio = np.zeros((34000,))
        outputs = speech_recognizer(audio)
        self.assertEqual(outputs, {"text": ANY(str)})

89
        # Striding
90
91
92
93
        audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate}
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
94
95
96
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
97
98
99
100
101
        else:
            # Non CTC models cannot use striding.
            with self.assertRaises(ValueError):
                outputs = speech_recognizer(audio)

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        # Timestamps
        audio = np.zeros((34000,))
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio, return_timestamps="char")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )

            outputs = speech_recognizer(audio, return_timestamps="word")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )
126
127
128
129
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio, return_timestamps=True)
            self.assertIsInstance(outputs["chunks"], list)
            nb_chunks = len(outputs["chunks"])
130
            self.assertGreater(nb_chunks, 0)
131
132
133
134
135
136
137
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)],
                },
            )
138
139
        else:
            # Non CTC models cannot use return_timestamps
140
            with self.assertRaisesRegex(
141
                ValueError, "^We cannot return_timestamps yet on non-CTC models apart from Whisper!$"
142
            ):
143
144
                outputs = speech_recognizer(audio, return_timestamps="char")

145
146
147
148
149
150
    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline("automatic-speech-recognition", framework="pt")

    @require_torch
151
    def test_small_model_pt(self):
152
153
154
155
156
157
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-small-mustc-en-fr-st",
            tokenizer="facebook/s2t-small-mustc-en-fr-st",
            framework="pt",
        )
158
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
159
        output = speech_recognizer(waveform)
160
        self.assertEqual(output, {"text": "(Applaudissements)"})
161
162
        output = speech_recognizer(waveform, chunk_length_s=10)
        self.assertEqual(output, {"text": "(Applaudissements)"})
163
164

        # Non CTC models cannot use return_timestamps
165
        with self.assertRaisesRegex(
166
            ValueError, "^We cannot return_timestamps yet on non-CTC models apart from Whisper!$"
167
        ):
168
            _ = speech_recognizer(waveform, return_timestamps="char")
169

170
    @slow
171
    @require_torch_accelerator
172
173
174
    def test_whisper_fp16(self):
        speech_recognizer = pipeline(
            model="openai/whisper-base",
175
            device=torch_device,
176
177
178
179
180
            torch_dtype=torch.float16,
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        speech_recognizer(waveform)

181
182
183
    @require_torch
    def test_small_model_pt_seq2seq(self):
        speech_recognizer = pipeline(
184
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
185
186
187
188
189
190
191
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"})

192
193
194
195
196
197
198
199
200
201
202
    @require_torch
    def test_small_model_pt_seq2seq_gen_kwargs(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2})
        self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"})

Nicolas Patry's avatar
Nicolas Patry committed
203
204
205
206
    @slow
    @require_torch
    @require_pyctcdecode
    def test_large_model_pt_with_lm(self):
207
        dataset = load_dataset("Narsil/asr_dummy", streaming=True, trust_remote_code=True)
208
209
        third_item = next(iter(dataset["test"].skip(3)))
        filename = third_item["file"]
Nicolas Patry's avatar
Nicolas Patry committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm",
            framework="pt",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        output = speech_recognizer(filename)
        self.assertEqual(
            output,
            {"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"},
        )

        # Override back to pure CTC
        speech_recognizer.type = "ctc"
        output = speech_recognizer(filename)
        # plumajre != plumaje
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
233
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre"
                )
Nicolas Patry's avatar
Nicolas Patry committed
234
235
236
            },
        )

237
238
239
240
241
242
        speech_recognizer.type = "ctc_with_lm"
        # Simple test with CTC with LM, chunking + timestamps
        output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word")
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
245
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri"
                ),
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                "chunks": [
                    {"text": "y", "timestamp": (0.52, 0.54)},
                    {"text": "en", "timestamp": (0.6, 0.68)},
                    {"text": "las", "timestamp": (0.74, 0.84)},
                    {"text": "ramas", "timestamp": (0.94, 1.24)},
                    {"text": "medio", "timestamp": (1.32, 1.52)},
                    {"text": "sumergidas", "timestamp": (1.56, 2.22)},
                    {"text": "revoloteaban", "timestamp": (2.36, 3.0)},
                    {"text": "algunos", "timestamp": (3.06, 3.38)},
                    {"text": "pájaros", "timestamp": (3.46, 3.86)},
                    {"text": "de", "timestamp": (3.92, 4.0)},
                    {"text": "quimérico", "timestamp": (4.08, 4.6)},
                    {"text": "y", "timestamp": (4.66, 4.68)},
                    {"text": "legendario", "timestamp": (4.74, 5.26)},
                    {"text": "plumajcri", "timestamp": (5.34, 5.74)},
                ],
            },
        )
264
265
266
267
268
        # CTC + LM models cannot use return_timestamps="char"
        with self.assertRaisesRegex(
            ValueError, "^CTC with LM can only predict word level timestamps, set `return_timestamps='word'`$"
        ):
            _ = speech_recognizer(filename, return_timestamps="char")
269

270
271
    @require_tf
    def test_small_model_tf(self):
amyeroberts's avatar
amyeroberts committed
272
        self.skipTest(reason="Tensorflow not supported yet.")
273

274
275
276
    @require_torch
    def test_torch_small_no_tokenizer_files(self):
        # test that model without tokenizer file cannot be loaded
277
        with pytest.raises(OSError):
278
279
            pipeline(
                task="automatic-speech-recognition",
280
                model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
281
282
283
                framework="pt",
            )

284
285
286
287
288
289
290
291
292
    @require_torch
    @slow
    def test_torch_large(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-base-960h",
            tokenizer="facebook/wav2vec2-base-960h",
            framework="pt",
        )
293
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
294
295
296
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

297
298
299
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
300
        filename = ds[40]["file"]
301
302
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
303

304
305
306
307
308
309
310
311
312
313
314
315
    @require_torch
    @slow
    def test_torch_large_with_input_features(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-audio/wav2vec2-bert-CV16-en",
            framework="pt",
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

316
317
318
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
319
320
321
322
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "a man said to the universe sir i exist"})

323
    @slow
324
    @require_torch
325
    @slow
326
327
328
329
330
331
332
    def test_return_timestamps_in_preprocess(self):
        pipe = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            chunk_length_s=8,
            stride_length_s=1,
        )
333
        data = load_dataset("openslr/librispeech_asr", "clean", split="test", streaming=True, trust_remote_code=True)
334
335
336
337
338
339
340
341
342
343
        sample = next(iter(data))
        pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="en", task="transcribe")

        res = pipe(sample["audio"]["array"])
        self.assertEqual(res, {"text": " Conquered returned to its place amidst the tents."})
        res = pipe(sample["audio"]["array"], return_timestamps=True)
        self.assertEqual(
            res,
            {
                "text": " Conquered returned to its place amidst the tents.",
344
                "chunks": [{"timestamp": (0.0, 3.36), "text": " Conquered returned to its place amidst the tents."}],
345
346
            },
        )
347
348
        pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
        res = pipe(sample["audio"]["array"], return_timestamps="word")
349

350
351
352
353
        # fmt: off
        self.assertEqual(
            res,
            {
354
355
356
357
358
359
360
361
362
363
                'text': ' Conquered returned to its place amidst the tents.',
                'chunks': [
                    {'text': ' Conquered', 'timestamp': (0.5, 1.2)},
                    {'text': ' returned', 'timestamp': (1.2, 1.64)},
                    {'text': ' to', 'timestamp': (1.64, 1.84)},
                    {'text': ' its', 'timestamp': (1.84, 2.02)},
                    {'text': ' place', 'timestamp': (2.02, 2.28)},
                    {'text': ' amidst', 'timestamp': (2.28, 2.8)},
                    {'text': ' the', 'timestamp': (2.8, 2.98)},
                    {'text': ' tents.', 'timestamp': (2.98, 3.48)},
364
365
                ],
            },
366
367
        )
        # fmt: on
368

369
370
371
372
373
374
375
    @slow
    @require_torch
    def test_return_timestamps_in_preprocess_longform(self):
        pipe = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
        )
376
        data = load_dataset("openslr/librispeech_asr", "clean", split="test", streaming=True, trust_remote_code=True)
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        samples = [next(iter(data)) for _ in range(8)]
        audio = np.concatenate([sample["audio"]["array"] for sample in samples])

        res = pipe(audio)
        expected_output = {
            "text": " Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst "
            "the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst "
            "the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst "
            "the tents. Concord returned to its place amidst the tents."
        }
        self.assertEqual(res, expected_output)
        res = pipe(audio, return_timestamps=True)
        self.assertEqual(
            res,
            {
                "text": " Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents. Concord returned to its place amidst the tents.",
                "chunks": [
                    {"timestamp": (0.0, 3.22), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (3.22, 6.74), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (6.74, 10.26), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (10.26, 13.78), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (13.78, 17.3), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (17.3, 20.82), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (20.82, 24.34), "text": " Concord returned to its place amidst the tents."},
                    {"timestamp": (24.34, 27.86), "text": " Concord returned to its place amidst the tents."},
                ],
            },
        )
        pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
        res = pipe(audio, return_timestamps="word")

        # fmt: off
        self.assertEqual(
            res["chunks"][:15],
            [
                {"text": " Concord", "timestamp": (0.5, 0.94)},
                {"text": " returned", "timestamp": (0.94, 1.52)},
                {"text": " to", "timestamp": (1.52, 1.78)},
                {"text": " its", "timestamp": (1.78, 1.98)},
                {"text": " place", "timestamp": (1.98, 2.16)},
                {"text": " amidst", "timestamp": (2.16, 2.5)},
                {"text": " the", "timestamp": (2.5, 2.9)},
                {"text": " tents.", "timestamp": (2.9, 4.2)},
                {"text": " Concord", "timestamp": (4.2, 4.5)},
                {"text": " returned", "timestamp": (4.5, 5.0)},
                {"text": " to", "timestamp": (5.0, 5.28)},
                {"text": " its", "timestamp": (5.28, 5.48)},
                {"text": " place", "timestamp": (5.48, 5.7)},
                {"text": " amidst", "timestamp": (5.7, 6.02)},
                {"text": " the", "timestamp": (6.02, 6.4)}


            ],
        )
        # fmt: on

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    @require_torch
    def test_return_timestamps_in_init(self):
        # segment-level timestamps are accepted
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        tokenizer = AutoTokenizer.from_pretrained("openai/whisper-tiny")
        feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny")

        dummy_speech = np.ones(100)

        pipe = pipeline(
            task="automatic-speech-recognition",
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            chunk_length_s=8,
            stride_length_s=1,
            return_timestamps=True,
        )

        _ = pipe(dummy_speech)

        # word-level timestamps are accepted
        pipe = pipeline(
            task="automatic-speech-recognition",
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            chunk_length_s=8,
            stride_length_s=1,
            return_timestamps="word",
        )

        _ = pipe(dummy_speech)

        # char-level timestamps are not accepted
        with self.assertRaisesRegex(
            ValueError,
            "^Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
            "Use `return_timestamps='word'` or `return_timestamps=True` respectively.$",
        ):
            pipe = pipeline(
                task="automatic-speech-recognition",
                model=model,
                feature_extractor=feature_extractor,
                tokenizer=tokenizer,
                chunk_length_s=8,
                stride_length_s=1,
                return_timestamps="char",
            )

            _ = pipe(dummy_speech)

485
486
487
488
489
490
491
492
    @require_torch
    @slow
    def test_torch_whisper(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            framework="pt",
        )
493
494
495
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
496
497
498
499
500
501
502
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        output = speech_recognizer([filename], chunk_length_s=5, batch_size=4)
        self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}])

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    @slow
    def test_find_longest_common_subsequence(self):
        max_source_positions = 1500
        processor = AutoProcessor.from_pretrained("openai/whisper-tiny")

        previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]]
        self.assertEqual(
            processor.decode(previous_sequence[0], output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
        # fmt: off
        next_sequences_1 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        self.assertEqual(
            processor.decode(next_sequences_1[0], output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )
        merge = _find_timestamp_sequence(
540
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]],
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )

        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 27.5)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (27.5, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the sequence is in the middle of the 1st next sequence
        # fmt: off
        next_sequences_2 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        # {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
577
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]],
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {
                        "text": (
                            " not worth thinking about. His instant panic was followed by a small, sharp blow high on"
                            " his chest."
                        ),
                        "timestamp": (22.56, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the previous sequence is not included in the current sequence
608
        next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]]  # fmt: skip
609
610
        # {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
611
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]],
612
613
614
615
616
617
618
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832],
619
        )  # fmt: skip
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (24.96, 29.36),
                    },
                ],
            },
        )
        # last case is when the sequence is not in the first next predicted start and end of timestamp
        next_sequences_3 = [
638
            [50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934]
639
        ]  # fmt: skip
640
        merge = _find_timestamp_sequence(
641
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]],
642
643
644
645
646
647
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        self.assertEqual(
            merge,
648
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912]
649
        )  # fmt: skip
650
651
652
653
654
655
656
657
658
659
660
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
661
                        "timestamp": (24.96, 30.96),
662
663
664
665
666
667
668
669
                    },
                ],
            },
        )

    @slow
    @require_torch
    def test_whisper_timestamp_prediction(self):
670
671
672
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
        array = np.concatenate(
            [ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
        )
        pipe = pipeline(
            model="openai/whisper-small",
            return_timestamps=True,
        )

        output = pipe(ds[40]["audio"])
        self.assertDictEqual(
            output,
            {
                "text": " A man said to the universe, Sir, I exist.",
                "chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}],
            },
        )

        output = pipe(array, chunk_length_s=10)
        self.assertDictEqual(
692
            nested_simplify(output),
693
694
695
696
697
698
699
700
701
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment he wore, the "
                            "cut"
                        ),
702
                        "timestamp": (5.5, 11.95),
703
704
705
706
707
708
709
                    },
                    {
                        "text": (
                            " on his chest still dripping blood, the ache of his "
                            "overstrained eyes, even the soaring arena around him "
                            "with"
                        ),
710
                        "timestamp": (11.95, 19.61),
711
712
713
                    },
                    {
                        "text": " the thousands of spectators, retrievality is not worth thinking about.",
714
                        "timestamp": (19.61, 25.0),
715
716
717
                    },
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
718
                        "timestamp": (25.0, 29.4),
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
                    },
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore, the cut on his chest still dripping blood, the ache of his "
                    "overstrained eyes, even the soaring arena around him with the "
                    "thousands of spectators, retrievality is not worth thinking about. "
                    "His instant panic was followed by a small, sharp blow high on his "
                    "chest."
                ),
            },
        )

        output = pipe(array)
        self.assertDictEqual(
            output,
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment"
                        ),
                        "timestamp": (5.5, 10.18),
                    },
                    {"text": " he wore.", "timestamp": (10.18, 11.68)},
                    {"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)},
                    {"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)},
                    {
                        "text": (
                            " Even the soaring arena around him with the thousands of spectators were trivialities"
                        ),
                        "timestamp": (17.6, 22.56),
                    },
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore. The cut on his chest still dripping blood. The ache of his "
                    "overstrained eyes. Even the soaring arena around him with the "
                    "thousands of spectators were trivialities not worth thinking about."
                ),
            },
        )

767
768
769
    @slow
    @require_torch
    def test_whisper_large_timestamp_prediction(self):
770
771
772
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
        array = np.concatenate(
            [ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
        )
        pipe = pipeline(model="openai/whisper-large-v3", return_timestamps=True)

        output = pipe(ds[40]["audio"])
        self.assertDictEqual(
            output,
            {
                "text": " A man said to the universe, Sir, I exist.",
                "chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.08)}],
            },
        )

        output = pipe(array, chunk_length_s=10)

        self.assertDictEqual(
            nested_simplify(output),
            {
                "chunks": [
                    {"timestamp": (0.0, 2.0), "text": (" A man said to the universe,")},
                    {"timestamp": (2.0, 4.1), "text": (" Sir, I exist.")},
                    {"timestamp": (5.14, 5.96), "text": (" Sweat covered")},
                    {"timestamp": (5.96, 8.02), "text": (" Breon's body, trickling into")},
                    {"timestamp": (8.02, 10.67), "text": (" the tight loincloth that was the only garment he wore,")},
                    {"timestamp": (10.67, 13.67), "text": (" the cut on his chest still dripping blood,")},
                    {"timestamp": (13.67, 17.61), "text": (" the ache of his overstrained eyes.")},
                    {
                        "timestamp": (17.61, 24.0),
                        "text": (
                            " Even the soaring arena around him with thousands of spectators were trivialities not worth thinking about."
                        ),
                    },
                    {
                        "timestamp": (24.0, 29.94),
                        "text": (" His instant of panic was followed by a small, sharp blow high on his chest."),
                    },
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Breon's"
                    " body, trickling into the tight loincloth that was the only garment"
                    " he wore, the cut on his chest still dripping blood, the ache of his"
                    " overstrained eyes. Even the soaring arena around him with thousands"
                    " of spectators were trivialities not worth thinking about. His "
                    "instant of panic was followed by a small, sharp blow high on his chest."
                ),
            },
        )

        output = pipe(array)
        self.assertDictEqual(
            output,
            {
                "chunks": [
                    {"timestamp": (0.0, 1.96), "text": " A man said to the universe,"},
                    {"timestamp": (2.7, 4.1), "text": " Sir, I exist."},
                    {"timestamp": (5.14, 6.84), "text": " Sweat covered Brion's body,"},
                    {
                        "timestamp": (7.4, 10.68),
                        "text": " trickling into the tight loincloth that was the only garment he wore,",
                    },
                    {"timestamp": (11.6, 13.94), "text": " the cut on his chest still dripping blood,"},
                    {"timestamp": (14.78, 16.72), "text": " the ache of his overstrained eyes,"},
                    {
                        "timestamp": (17.32, 21.16),
                        "text": " even the soaring arena around him with the thousands of spectators",
                    },
                    {"timestamp": (21.16, 23.94), "text": " were trivialities not worth thinking about."},
                    {
                        "timestamp": (24.42, 29.94),
                        "text": " His instant panic was followed by a small sharp blow high on his chest.",
                    },
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's body,"
                    " trickling into the tight loincloth that was the only garment he wore, "
                    "the cut on his chest still dripping blood, the ache of his overstrained "
                    "eyes, even the soaring arena around him with the thousands of spectators "
                    "were trivialities not worth thinking about. His instant panic was followed "
                    "by a small sharp blow high on his chest."
                ),
            },
        )

857
858
859
860
861
862
863
864
865
    @slow
    @require_torch
    def test_whisper_word_timestamps_batched(self):
        pipe = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            chunk_length_s=3,
            return_timestamps="word",
        )
866
867
868
        data = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        sample = data[0]["audio"]

        # not the same output as test_simple_whisper_asr because of chunking
        EXPECTED_OUTPUT = {
            "text": " Mr. Quilder is the apostle of the middle classes and we are glad to welcome his gospel.",
            "chunks": [
                {"text": " Mr.", "timestamp": (0.48, 0.96)},
                {"text": " Quilder", "timestamp": (0.96, 1.24)},
                {"text": " is", "timestamp": (1.24, 1.5)},
                {"text": " the", "timestamp": (1.5, 1.72)},
                {"text": " apostle", "timestamp": (1.72, 1.98)},
                {"text": " of", "timestamp": (1.98, 2.32)},
                {"text": " the", "timestamp": (2.32, 2.5)},
                {"text": " middle", "timestamp": (2.5, 2.68)},
                {"text": " classes", "timestamp": (2.68, 3.2)},
                {"text": " and", "timestamp": (3.2, 3.56)},
                {"text": " we", "timestamp": (3.56, 3.68)},
                {"text": " are", "timestamp": (3.68, 3.8)},
                {"text": " glad", "timestamp": (3.8, 4.1)},
                {"text": " to", "timestamp": (4.1, 4.34)},
                {"text": " welcome", "timestamp": (4.3, 4.6)},
                {"text": " his", "timestamp": (4.6, 4.94)},
                {"text": " gospel.", "timestamp": (4.94, 5.82)},
            ],
        }

        # batch size 1: copy the audio sample since pipeline consumes it
        output = pipe(sample.copy(), batch_size=1)
        self.assertDictEqual(output, EXPECTED_OUTPUT)

        # batch size 2: input audio is chunked into smaller pieces so it's testing batching
        output = pipe(sample, batch_size=2)
        self.assertDictEqual(output, EXPECTED_OUTPUT)

903
904
905
906
907
908
909
910
    @slow
    @require_torch
    def test_whisper_large_word_timestamps_batched(self):
        pipe = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-large-v3",
            return_timestamps="word",
        )
911
912
913
        data = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
        sample = data[0]["audio"]

        # not the same output as test_simple_whisper_asr because of chunking
        EXPECTED_OUTPUT = {
            "text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
            "chunks": [
                {"text": " Mr.", "timestamp": (0.0, 0.74)},
                {"text": " Quilter", "timestamp": (0.74, 1.04)},
                {"text": " is", "timestamp": (1.04, 1.3)},
                {"text": " the", "timestamp": (1.3, 1.44)},
                {"text": " apostle", "timestamp": (1.44, 1.74)},
                {"text": " of", "timestamp": (1.74, 2.18)},
                {"text": " the", "timestamp": (2.18, 2.28)},
                {"text": " middle", "timestamp": (2.28, 2.5)},
                {"text": " classes,", "timestamp": (2.5, 3.0)},
                {"text": " and", "timestamp": (3.0, 3.4)},
                {"text": " we", "timestamp": (3.4, 3.5)},
                {"text": " are", "timestamp": (3.5, 3.6)},
                {"text": " glad", "timestamp": (3.6, 3.84)},
                {"text": " to", "timestamp": (3.84, 4.1)},
                {"text": " welcome", "timestamp": (4.1, 4.4)},
                {"text": " his", "timestamp": (4.4, 4.7)},
                {"text": " gospel.", "timestamp": (4.7, 5.34)},
            ],
        }

        # batch size 1: copy the audio sample since pipeline consumes it
        output = pipe(sample.copy(), batch_size=1)
        self.assertDictEqual(output, EXPECTED_OUTPUT)

        # batch size 2: input audio is chunked into smaller pieces so it's testing batching
        output = pipe(sample, batch_size=2)
        self.assertDictEqual(output, EXPECTED_OUTPUT)

948
949
950
951
952
953
954
955
956
957
    @require_torch
    @slow
    def test_torch_speech_encoder_decoder(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-wav2vec2-large-en-de",
            feature_extractor="facebook/s2t-wav2vec2-large-en-de",
            framework="pt",
        )

958
959
960
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
961
        filename = ds[40]["file"]
962
963
964
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})

965
966
967
968
969
970
971
972
973
    @slow
    @require_torch
    def test_simple_wav2vec2(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

974
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
975
976
977
        output = asr(waveform)
        self.assertEqual(output, {"text": ""})

978
979
980
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
981
        filename = ds[40]["file"]
982
983
984
        output = asr(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

985
        filename = ds[40]["file"]
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

    @slow
    @require_torch
    @require_torchaudio
    def test_simple_s2t(self):
        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

1001
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
1002
1003

        output = asr(waveform)
1004
        self.assertEqual(output, {"text": "(Applausi)"})
1005

1006
1007
1008
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1009
        filename = ds[40]["file"]
1010
1011
1012
        output = asr(filename)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})

1013
        filename = ds[40]["file"]
1014
1015
1016
1017
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
1018

Arthur's avatar
Arthur committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_asr(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            framework="pt",
        )
1028
1029
1030
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
Arthur's avatar
Arthur committed
1031
1032
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
1033
1034
1035
1036
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
        )
Arthur's avatar
Arthur committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
        output = speech_recognizer(filename, return_timestamps=True)
        self.assertEqual(
            output,
            {
                "text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
                "chunks": [
                    {
                        "text": (
                            " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
                        ),
                        "timestamp": (0.0, 5.44),
                    }
                ],
            },
        )
1052
1053
1054
1055
1056
1057
        speech_recognizer.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
        output = speech_recognizer(filename, return_timestamps="word")
        # fmt: off
        self.assertEqual(
            output,
            {
1058
1059
1060
1061
                'text': ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.',
                'chunks': [
                    {'text': ' Mr.', 'timestamp': (0.38, 1.04)},
                    {'text': ' Quilter', 'timestamp': (1.04, 1.18)},
1062
1063
1064
                    {'text': ' is', 'timestamp': (1.18, 1.44)},
                    {'text': ' the', 'timestamp': (1.44, 1.58)},
                    {'text': ' apostle', 'timestamp': (1.58, 1.98)},
1065
1066
                    {'text': ' of', 'timestamp': (1.98, 2.32)},
                    {'text': ' the', 'timestamp': (2.32, 2.46)},
1067
                    {'text': ' middle', 'timestamp': (2.46, 2.56)},
1068
1069
1070
1071
                    {'text': ' classes,', 'timestamp': (2.56, 3.4)},
                    {'text': ' and', 'timestamp': (3.4, 3.54)},
                    {'text': ' we', 'timestamp': (3.54, 3.62)},
                    {'text': ' are', 'timestamp': (3.62, 3.72)},
1072
1073
                    {'text': ' glad', 'timestamp': (3.72, 4.0)},
                    {'text': ' to', 'timestamp': (4.0, 4.26)},
1074
1075
1076
1077
1078
                    {'text': ' welcome', 'timestamp': (4.26, 4.56)},
                    {'text': ' his', 'timestamp': (4.56, 4.92)},
                    {'text': ' gospel.', 'timestamp': (4.92, 5.84)}
                ]
            }
1079
1080
        )
        # fmt: on
Arthur's avatar
Arthur committed
1081

1082
1083
1084
1085
1086
1087
1088
1089
        # Whisper can only predict segment level timestamps or word level, not character level
        with self.assertRaisesRegex(
            ValueError,
            "^Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
            "Use `return_timestamps='word'` or `return_timestamps=True` respectively.$",
        ):
            _ = speech_recognizer(filename, return_timestamps="char")

Arthur's avatar
Arthur committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_translation(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-large",
            framework="pt",
        )
1099
1100
1101
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
Arthur's avatar
Arthur committed
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
        tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large")
        feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large")

        speech_recognizer_2 = AutomaticSpeechRecognitionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )
        output_2 = speech_recognizer_2(filename)
        self.assertEqual(output, output_2)

Arthur's avatar
Arthur committed
1116
1117
1118
        # either use generate_kwargs or set the model's generation_config
        # model.generation_config.task = "transcribe"
        # model.generation_config.lang = "<|it|>"
Arthur's avatar
Arthur committed
1119
        speech_translator = AutomaticSpeechRecognitionPipeline(
Arthur's avatar
Arthur committed
1120
1121
1122
1123
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            generate_kwargs={"task": "transcribe", "language": "<|it|>"},
Arthur's avatar
Arthur committed
1124
1125
        )
        output_3 = speech_translator(filename)
Arthur's avatar
Arthur committed
1126
        self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."})
Arthur's avatar
Arthur committed
1127

1128
    @slow
1129
1130
1131
1132
1133
1134
1135
    @require_torch
    def test_whisper_language(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            framework="pt",
        )
1136
1137
1138
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
        filename = ds[0]["file"]

        # 1. English-only model compatible with no language argument
        output = speech_recognizer(filename)
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
        )

        # 2. English-only Whisper does not accept the language argument
        with self.assertRaisesRegex(
            ValueError,
1151
            "Cannot specify `task` or `language` for an English-only model. If the model is intended to be multilingual, "
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
            "pass `is_multilingual=True` to generate, or update the generation config.",
        ):
            _ = speech_recognizer(filename, generate_kwargs={"language": "en"})

        # 3. Multilingual model accepts language argument
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            framework="pt",
        )
        output = speech_recognizer(filename, generate_kwargs={"language": "en"})
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel."},
        )

1168
1169
1170
    @slow
    def test_speculative_decoding_whisper_non_distil(self):
        # Load data:
1171
1172
1173
        dataset = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation[:1]", trust_remote_code=True
        )
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        sample = dataset[0]["audio"]

        # Load model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            use_safetensors=True,
        )

        # Load assistant:
        assistant_model_id = "openai/whisper-tiny"
        assistant_model = AutoModelForSpeechSeq2Seq.from_pretrained(
            assistant_model_id,
            use_safetensors=True,
        )

        # Load pipeline:
        pipe = AutomaticSpeechRecognitionPipeline(
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            generate_kwargs={"language": "en"},
        )

        start_time = time.time()
        transcription_non_ass = pipe(sample.copy(), generate_kwargs={"assistant_model": assistant_model})["text"]
        total_time_assist = time.time() - start_time

        start_time = time.time()
        transcription_ass = pipe(sample)["text"]
        total_time_non_assist = time.time() - start_time

        self.assertEqual(transcription_ass, transcription_non_ass)
        self.assertEqual(
            transcription_ass,
            " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.",
        )
        self.assertTrue(total_time_non_assist > total_time_assist, "Make sure that assistant decoding is faster")

    @slow
    def test_speculative_decoding_whisper_distil(self):
        # Load data:
1217
1218
1219
        dataset = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation[:1]", trust_remote_code=True
        )
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
        sample = dataset[0]["audio"]

        # Load model:
        model_id = "openai/whisper-large-v2"
        processor = AutoProcessor.from_pretrained(model_id)
        model = AutoModelForSpeechSeq2Seq.from_pretrained(
            model_id,
            use_safetensors=True,
        )

        # Load assistant:
        assistant_model_id = "distil-whisper/distil-large-v2"
        assistant_model = AutoModelForCausalLM.from_pretrained(
            assistant_model_id,
            use_safetensors=True,
        )

        # Load pipeline:
        pipe = AutomaticSpeechRecognitionPipeline(
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            generate_kwargs={"language": "en"},
        )

        start_time = time.time()
        transcription_non_ass = pipe(sample.copy(), generate_kwargs={"assistant_model": assistant_model})["text"]
        total_time_assist = time.time() - start_time

        start_time = time.time()
        transcription_ass = pipe(sample)["text"]
        total_time_non_assist = time.time() - start_time

        self.assertEqual(transcription_ass, transcription_non_ass)
        self.assertEqual(
            transcription_ass,
            " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.",
        )
        self.assertEqual(total_time_non_assist > total_time_assist, "Make sure that assistant decoding is faster")

1260
    @slow
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
    @require_torch
    @require_torchaudio
    def test_xls_r_to_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-21-to-en",
            feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
            framework="pt",
        )

1271
1272
1273
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})

    @slow
    @require_torch
    @require_torchaudio
    def test_xls_r_from_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-en-to-15",
            feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
            framework="pt",
        )

1289
1290
1291
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1292
1293
1294
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307

    @slow
    @require_torch
    @require_torchaudio
    def test_speech_to_text_leveraged(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-2-bart-base",
            feature_extractor="patrickvonplaten/wav2vec2-2-bart-base",
            tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"),
            framework="pt",
        )

1308
1309
1310
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1311
        filename = ds[40]["file"]
1312

1313
1314
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
1315

1316
    @slow
1317
    @require_torch_accelerator
1318
1319
1320
1321
    def test_wav2vec2_conformer_float16(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-conformer-rope-large-960h-ft",
1322
            device=torch_device,
1323
1324
1325
1326
            torch_dtype=torch.float16,
            framework="pt",
        )

1327
1328
1329
        dataset = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
1330
1331
1332
1333
1334
1335
1336
1337
        sample = dataset[0]["audio"]

        output = speech_recognizer(sample)
        self.assertEqual(
            output,
            {"text": "MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL"},
        )

1338
1339
1340
1341
1342
1343
1344
1345
    @require_torch
    def test_chunking_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
            chunk_length_s=10.0,
        )

1346
1347
1348
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1349
1350
1351
1352
1353
1354
1355
1356
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "ZBT ZC")

1357
1358
1359
1360
1361
1362
1363
    @require_torch
    def test_return_timestamps_ctc_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )

1364
1365
1366
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
        # Take short audio to keep the test readable
        audio = ds[40]["audio"]["array"][:800]

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": " ", "timestamp": (0.0, 0.012)},
                    {"text": "Z", "timestamp": (0.012, 0.016)},
                    {"text": "B", "timestamp": (0.016, 0.02)},
                    {"text": "T", "timestamp": (0.02, 0.024)},
                    {"text": " ", "timestamp": (0.024, 0.028)},
                    {"text": "Z", "timestamp": (0.028, 0.032)},
                    {"text": "X", "timestamp": (0.032, 0.036)},
                    {"text": " ", "timestamp": (0.036, 0.04)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": "ZBT", "timestamp": (0.012, 0.024)},
                    {"text": "ZX", "timestamp": (0.028, 0.036)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

1402
1403
1404
1405
1406
1407
1408
1409
    @require_torch
    @require_pyctcdecode
    def test_chunking_fast_with_lm(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
            chunk_length_s=10.0,
        )

1410
1411
1412
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        # Batch_size = 1
        output1 = speech_recognizer([audio_tiled], batch_size=1)
        self.assertEqual(output1, [{"text": ANY(str)}])
        self.assertEqual(output1[0]["text"][:6], "<s> <s")

        # batch_size = 2
        output2 = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output2, [{"text": ANY(str)}])
        self.assertEqual(output2[0]["text"][:6], "<s> <s")

        # TODO There is an offby one error because of the ratio.
        # Maybe logits get affected by the padding on this random
        # model is more likely. Add some masking ?
        # self.assertEqual(output1, output2)

1432
1433
1434
1435
1436
1437
1438
1439
    @require_torch
    @require_pyctcdecode
    def test_with_lm_fast(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

1440
1441
1442
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1443
1444
1445
1446
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
1447

1448
1449
1450
1451
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

1452
1453
1454
1455
1456
1457
1458
1459
        # Making sure the argument are passed to the decoder
        # Since no change happens in the result, check the error comes from
        # the `decode_beams` function.
        with self.assertRaises(TypeError) as e:
            output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2})
            self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'")
        output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2})

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    @require_torch
    @require_pyctcdecode
    def test_with_local_lm_fast(self):
        local_dir = snapshot_download("hf-internal-testing/processor_with_lm")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=local_dir,
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

1470
1471
1472
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)

        output = speech_recognizer([audio_tiled], batch_size=2)

        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    @require_torch
    @slow
    def test_whisper_prompted(self):
        processor = AutoProcessor.from_pretrained("openai/whisper-tiny")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        model = model.to("cuda")

        pipe = pipeline(
            "automatic-speech-recognition",
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            max_new_tokens=128,
            chunk_length_s=30,
            batch_size=16,
            device="cuda:0",
        )

        dataset = load_dataset("distil-whisper/librispeech_long", "clean", split="validation")
        sample = dataset[0]["audio"]

        # prompt the model to misspell "Mr Quilter" as "Mr Quillter"
        whisper_prompt = "Mr. Quillter."
        prompt_ids = pipe.tokenizer.get_prompt_ids(whisper_prompt, return_tensors="pt")

        unprompted_result = pipe(sample.copy())["text"]
        prompted_result = pipe(sample, generate_kwargs={"prompt_ids": prompt_ids})["text"]

        # fmt: off
        EXPECTED_UNPROMPTED_RESULT = " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is Mr. Quilter's manner less interesting than his matter. He tells us that at this festive season of the year, with Christmas and roast beef looming before us, similarly drawn from eating and its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins work is really Greek after all and can discover in it but little of rocky Ithaca. Lennils, pictures are a sort of upguards and atom paintings and Mason's exquisite itals are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the same way that Mr. Carker used to flash his teeth. And Mr. John Collier gives his sitter a cheerful slap on the back before he says like a shampoo or a Turkish bath. Next man"
        EXPECTED_PROMPTED_RESULT = " Mr. Quillter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is Mr. Quillter's manner less interesting than his matter. He tells us that at this festive season of the year, with Christmas and roast beef looming before us, similarly drawn from eating and its results occur most readily to the mind. He has grave doubts whether Sir Frederick Latins work is really great after all, and can discover in it but little of rocky Ithaca. Lennils, pictures are a sort of upguards and atom paintings, and Mason's exquisite itals are as national as a jingo poem. Mr. Birkut Foster's landscapes smile at one much in the same way that Mr. Carker used to flash his teeth. Mr. John Collier gives his sitter a cheerful slap on the back before he says like a shampoo or a Turkish bath. Next man."
        # fmt: on

        self.assertEqual(unprompted_result, EXPECTED_UNPROMPTED_RESULT)
        self.assertEqual(prompted_result, EXPECTED_PROMPTED_RESULT)

1519
1520
1521
1522
    @require_torch
    @slow
    def test_whisper_longform(self):
        # fmt: off
1523
        EXPECTED_RESULT = " Folks, if you watch the show, you know, I spent a lot of time right over there. Patiently and astutely scrutinizing the boxwood and mahogany chest set of the day's biggest stories developing the central headline pawns, definitely maneuvering an oso topical night to F6, fainting a classic Sicilian, nade door variation on the news, all the while seeing eight moves deep and patiently marshalling the latest press releases into a fisher's shows in Lip Nitsky attack that culminates in the elegant lethal slow-played, all-passant checkmate that is my nightly monologue. But sometimes, sometimes, folks, I. CHEERING AND APPLAUSE Sometimes I startle away, cubside down in the monkey bars of a condemned playground on a super fun site. Get all hept up on goofballs. Rummage that were discarded tag bag of defective toys. Yank out a fist bowl of disembodied doll limbs, toss them on Saturday, Rusty Cargo, container down by the Wharf, and challenge toothless drifters to the godless bughouse lets of tournament that is my segment. MUSIC Meanwhile!"
1524
1525
1526
1527
        # fmt: on

        processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en")
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
1528
        model = model.to(torch_device)
1529
1530
1531
1532
1533
1534
1535

        pipe = pipeline(
            "automatic-speech-recognition",
            model=model,
            tokenizer=processor.tokenizer,
            feature_extractor=processor.feature_extractor,
            max_new_tokens=128,
1536
            device=torch_device,
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
        )

        ds = load_dataset("distil-whisper/meanwhile", "default")["test"]
        ds = ds.cast_column("audio", Audio(sampling_rate=16000))
        audio = ds[:1]["audio"]

        result = pipe(audio)[0]["text"]

        assert result == EXPECTED_RESULT

1547
1548
1549
1550
1551
1552
    @require_torch
    @slow
    def test_seamless_v2(self):
        pipe = pipeline(
            "automatic-speech-recognition",
            model="facebook/seamless-m4t-v2-large",
1553
            device=torch_device,
1554
1555
        )

1556
1557
1558
        dataset = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
1559
1560
1561
1562
1563
1564
1565
        sample = dataset[0]["audio"]

        result = pipe(sample, generate_kwargs={"tgt_lang": "eng"})
        EXPECTED_RESULT = "mister quilter is the apostle of the middle classes and we are glad to welcome his gospel"

        assert result["text"] == EXPECTED_RESULT

1566
1567
    @require_torch
    @slow
1568
    def test_chunking_and_timestamps(self):
1569
1570
1571
1572
1573
1574
1575
1576
1577
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            framework="pt",
1578
            chunk_length_s=10.0,
1579
1580
        )

1581
1582
1583
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1584
1585
        audio = ds[40]["audio"]["array"]

1586
        n_repeats = 10
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}])

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(audio.shape, (74_400,))
        self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000)
        # The audio is 74_400 / 16_000 = 4.65s long.
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": " ", "timestamp": (0.62, 0.66)},
                    {"text": "M", "timestamp": (0.68, 0.7)},
                    {"text": "A", "timestamp": (0.78, 0.8)},
                    {"text": "N", "timestamp": (0.84, 0.86)},
                    {"text": " ", "timestamp": (0.92, 0.98)},
                    {"text": "S", "timestamp": (1.06, 1.08)},
                    {"text": "A", "timestamp": (1.14, 1.16)},
                    {"text": "I", "timestamp": (1.16, 1.18)},
                    {"text": "D", "timestamp": (1.2, 1.24)},
                    {"text": " ", "timestamp": (1.24, 1.28)},
                    {"text": "T", "timestamp": (1.28, 1.32)},
                    {"text": "O", "timestamp": (1.34, 1.36)},
                    {"text": " ", "timestamp": (1.38, 1.42)},
                    {"text": "T", "timestamp": (1.42, 1.44)},
                    {"text": "H", "timestamp": (1.44, 1.46)},
                    {"text": "E", "timestamp": (1.46, 1.5)},
                    {"text": " ", "timestamp": (1.5, 1.56)},
                    {"text": "U", "timestamp": (1.58, 1.62)},
                    {"text": "N", "timestamp": (1.64, 1.68)},
                    {"text": "I", "timestamp": (1.7, 1.72)},
                    {"text": "V", "timestamp": (1.76, 1.78)},
                    {"text": "E", "timestamp": (1.84, 1.86)},
                    {"text": "R", "timestamp": (1.86, 1.9)},
                    {"text": "S", "timestamp": (1.96, 1.98)},
                    {"text": "E", "timestamp": (1.98, 2.02)},
                    {"text": " ", "timestamp": (2.02, 2.06)},
                    {"text": "S", "timestamp": (2.82, 2.86)},
                    {"text": "I", "timestamp": (2.94, 2.96)},
                    {"text": "R", "timestamp": (2.98, 3.02)},
                    {"text": " ", "timestamp": (3.06, 3.12)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": " ", "timestamp": (3.58, 3.6)},
                    {"text": "E", "timestamp": (3.66, 3.68)},
                    {"text": "X", "timestamp": (3.68, 3.7)},
                    {"text": "I", "timestamp": (3.9, 3.92)},
                    {"text": "S", "timestamp": (3.94, 3.96)},
                    {"text": "T", "timestamp": (4.0, 4.02)},
                    {"text": " ", "timestamp": (4.06, 4.1)},
                ],
            },
        )
        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.28, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.5)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    {"text": "SIR", "timestamp": (2.82, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
        output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0)
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.3, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.48)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    # Tiny change linked to chunking.
                    {"text": "SIR", "timestamp": (2.84, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
1679
1680
1681
        # CTC models must specify return_timestamps type - cannot set `return_timestamps=True` blindly
        with self.assertRaisesRegex(
            ValueError,
1682
            "^CTC can either predict character level timestamps, or word level timestamps. "
1683
1684
1685
            "Set `return_timestamps='char'` or `return_timestamps='word'` as required.$",
        ):
            _ = speech_recognizer(audio, return_timestamps=True)
1686

1687
1688
1689
1690
1691
1692
1693
1694
    @require_torch
    @slow
    def test_chunking_with_lm(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-base-100h-with-lm",
            chunk_length_s=10.0,
        )
1695
1696
1697
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        ).sort("id")
1698
1699
1700
1701
1702
1703
1704
1705
1706
        audio = ds[40]["audio"]["array"]

        n_repeats = 10
        audio = np.tile(audio, n_repeats)
        output = speech_recognizer([audio], batch_size=2)
        expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats
        expected = [{"text": expected_text.strip()}]
        self.assertEqual(output, expected)

1707
1708
1709
1710
    @require_torch
    def test_chunk_iterator(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
1711
1712
        outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0))

1713
1714
1715
1716
1717
1718
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

        # two chunks no stride
1719
        outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0))
1720
1721
1722
1723
1724
1725
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

        # two chunks incomplete last
1726
        outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0))
1727
1728
1729
1730
1731
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1732
1733
1734
1735
1736
        # one chunk since first is also last, because it contains only data
        # in the right strided part we just mark that part as non stride
        # This test is specifically crafted to trigger a bug if next chunk
        # would be ignored by the fact that all the data would be
        # contained in the strided left data.
1737
        outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5))
1738
1739
1740
1741
1742
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

1743
1744
1745
1746
1747
1748
1749
    @require_torch
    def test_chunk_iterator_stride(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1750
        outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10))
1751
1752
1753
1754
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])
1755

1756
        outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10))
1757
1758
1759
1760
1761
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1762
        outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0))
1763
1764
1765
1766
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)])

1767
        outs = list(chunk_iter(inputs, feature_extractor, 36, 6, 6))
1768
1769
1770
1771
        self.assertEqual(len(outs), 4)
        self.assertEqual([o["stride"] for o in outs], [(36, 0, 6), (36, 6, 6), (36, 6, 6), (28, 6, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 36), (1, 36), (1, 36), (1, 28)])

1772
1773
1774
1775
        inputs = torch.LongTensor([i % 2 for i in range(100)])
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1776
        outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5))
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
        self.assertEqual(len(outs), 5)
        self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True])
        # (0, 25)
        self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"]))
        # (25, 45)
        self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"]))
        # (45, 65)
        self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"]))
        # (65, 85)
        self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"]))
        # (85, 100)
        self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"]))

1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
    @require_torch
    def test_stride(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 10)
        output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000})
        self.assertEqual(output, {"text": "OB XB  B EB BB  B EB B OB X"})

        # 0 effective ids Just take the middle one
        output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000})
1804
        self.assertEqual(output, {"text": ""})
1805
1806
1807

        # Only 1 arange.
        output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000})
1808
        self.assertEqual(output, {"text": "OB"})
1809
1810
1811

        # 2nd arange
        output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000})
1812
        self.assertEqual(output, {"text": "XB"})
1813

Nicolas Patry's avatar
Nicolas Patry committed
1814
    @slow
1815
    @require_torch_accelerator
Nicolas Patry's avatar
Nicolas Patry committed
1816
1817
1818
1819
1820
1821
    def test_slow_unfinished_sequence(self):
        from transformers import GenerationConfig

        pipe = pipeline(
            "automatic-speech-recognition",
            model="vasista22/whisper-hindi-large-v2",
1822
            device=torch_device,
Nicolas Patry's avatar
Nicolas Patry committed
1823
1824
1825
1826
        )
        # Original model wasn't trained with timestamps and has incorrect generation config
        pipe.model.generation_config = GenerationConfig.from_pretrained("openai/whisper-large-v2")

1827
        # the audio is 4 seconds long
Nicolas Patry's avatar
Nicolas Patry committed
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
        audio = hf_hub_download("Narsil/asr_dummy", filename="hindi.ogg", repo_type="dataset")

        out = pipe(
            audio,
            return_timestamps=True,
        )
        self.assertEqual(
            out,
            {
                "text": "मिर्ची में कितने विभिन्न प्रजातियां हैं",
1838
                "chunks": [{"timestamp": (0.58, None), "text": "मिर्ची में कितने विभिन्न प्रजातियां हैं"}],
Nicolas Patry's avatar
Nicolas Patry committed
1839
1840
1841
            },
        )

1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855

def require_ffmpeg(test_case):
    """
    Decorator marking a test that requires FFmpeg.

    These tests are skipped when FFmpeg isn't installed.

    """
    import subprocess

    try:
        subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL)
        return test_case
    except Exception:
amyeroberts's avatar
amyeroberts committed
1856
        return unittest.skip(reason="test requires ffmpeg")(test_case)
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916


def bytes_iter(chunk_size, chunks):
    for i in range(chunks):
        yield bytes(range(i * chunk_size, (i + 1) * chunk_size))


@require_ffmpeg
class AudioUtilsTest(unittest.TestCase):
    def test_chunk_bytes_iter_too_big(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)})
        # This is finished, but the chunk_bytes doesn't know it yet.
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride_stream(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True})
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True}
        )
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False}
        )
        with self.assertRaises(StopIteration):
            next(iter_)