"tests/models/wav2vec2/test_modeling_wav2vec2.py" did not exist on "2e12d90b9ed3005a3fa412566b899de2a229e033"
test_pipelines_automatic_speech_recognition.py 61.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
import pytest
19
from datasets import load_dataset
Nicolas Patry's avatar
Nicolas Patry committed
20
from huggingface_hub import hf_hub_download, snapshot_download
21

22
23
24
25
from transformers import (
    MODEL_FOR_CTC_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    AutoFeatureExtractor,
26
    AutoProcessor,
27
28
29
    AutoTokenizer,
    Speech2TextForConditionalGeneration,
    Wav2Vec2ForCTC,
Arthur's avatar
Arthur committed
30
    WhisperForConditionalGeneration,
31
)
32
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
33
from transformers.pipelines.audio_utils import chunk_bytes_iter
34
from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter
35
from transformers.testing_utils import (
36
    is_pipeline_test,
37
38
    is_torch_available,
    nested_simplify,
Nicolas Patry's avatar
Nicolas Patry committed
39
    require_pyctcdecode,
40
41
    require_tf,
    require_torch,
42
    require_torch_accelerator,
43
44
    require_torchaudio,
    slow,
45
    torch_device,
46
)
47

48
from .test_pipelines_common import ANY
49
50


51
52
53
54
if is_torch_available():
    import torch


55
# We can't use this mixin because it assumes TF support.
56
57
58
# from .test_pipelines_common import CustomInputPipelineCommonMixin


59
@is_pipeline_test
60
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
61
62
63
64
    model_mapping = dict(
        (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
        + (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
    )
65

66
    def get_test_pipeline(self, model, tokenizer, processor):
67
68
69
70
71
72
73
74
        if tokenizer is None:
            # Side effect of no Fast Tokenizer class for these model, so skipping
            # But the slow tokenizer test should still run as they're quite small
            self.skipTest("No tokenizer available")
            return
            # return None, None

        speech_recognizer = AutomaticSpeechRecognitionPipeline(
75
            model=model, tokenizer=tokenizer, feature_extractor=processor
76
77
78
79
80
81
82
83
84
85
86
87
        )

        # test with a raw waveform
        audio = np.zeros((34000,))
        audio2 = np.zeros((14000,))
        return speech_recognizer, [audio, audio2]

    def run_pipeline_test(self, speech_recognizer, examples):
        audio = np.zeros((34000,))
        outputs = speech_recognizer(audio)
        self.assertEqual(outputs, {"text": ANY(str)})

88
        # Striding
89
90
91
92
        audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate}
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
93
94
95
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
96
97
98
99
100
        else:
            # Non CTC models cannot use striding.
            with self.assertRaises(ValueError):
                outputs = speech_recognizer(audio)

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        # Timestamps
        audio = np.zeros((34000,))
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio, return_timestamps="char")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )

            outputs = speech_recognizer(audio, return_timestamps="word")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )
125
126
127
128
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio, return_timestamps=True)
            self.assertIsInstance(outputs["chunks"], list)
            nb_chunks = len(outputs["chunks"])
129
            self.assertGreater(nb_chunks, 0)
130
131
132
133
134
135
136
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)],
                },
            )
137
138
        else:
            # Non CTC models cannot use return_timestamps
139
            with self.assertRaisesRegex(
140
                ValueError, "^We cannot return_timestamps yet on non-CTC models apart from Whisper!$"
141
            ):
142
143
                outputs = speech_recognizer(audio, return_timestamps="char")

144
145
146
147
148
149
    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline("automatic-speech-recognition", framework="pt")

    @require_torch
150
    def test_small_model_pt(self):
151
152
153
154
155
156
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-small-mustc-en-fr-st",
            tokenizer="facebook/s2t-small-mustc-en-fr-st",
            framework="pt",
        )
157
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
158
        output = speech_recognizer(waveform)
159
        self.assertEqual(output, {"text": "(Applaudissements)"})
160
161
        output = speech_recognizer(waveform, chunk_length_s=10)
        self.assertEqual(output, {"text": "(Applaudissements)"})
162
163

        # Non CTC models cannot use return_timestamps
164
        with self.assertRaisesRegex(
165
            ValueError, "^We cannot return_timestamps yet on non-CTC models apart from Whisper!$"
166
        ):
167
            _ = speech_recognizer(waveform, return_timestamps="char")
168

169
    @slow
170
    @require_torch_accelerator
171
172
173
    def test_whisper_fp16(self):
        speech_recognizer = pipeline(
            model="openai/whisper-base",
174
            device=torch_device,
175
176
177
178
179
            torch_dtype=torch.float16,
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        speech_recognizer(waveform)

180
181
182
    @require_torch
    def test_small_model_pt_seq2seq(self):
        speech_recognizer = pipeline(
183
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
184
185
186
187
188
189
190
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"})

191
192
193
194
195
196
197
198
199
200
201
    @require_torch
    def test_small_model_pt_seq2seq_gen_kwargs(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2})
        self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"})

Nicolas Patry's avatar
Nicolas Patry committed
202
203
204
205
    @slow
    @require_torch
    @require_pyctcdecode
    def test_large_model_pt_with_lm(self):
206
207
208
        dataset = load_dataset("Narsil/asr_dummy", streaming=True)
        third_item = next(iter(dataset["test"].skip(3)))
        filename = third_item["file"]
Nicolas Patry's avatar
Nicolas Patry committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm",
            framework="pt",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        output = speech_recognizer(filename)
        self.assertEqual(
            output,
            {"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"},
        )

        # Override back to pure CTC
        speech_recognizer.type = "ctc"
        output = speech_recognizer(filename)
        # plumajre != plumaje
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre"
                )
Nicolas Patry's avatar
Nicolas Patry committed
233
234
235
            },
        )

236
237
238
239
240
241
        speech_recognizer.type = "ctc_with_lm"
        # Simple test with CTC with LM, chunking + timestamps
        output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word")
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri"
                ),
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                "chunks": [
                    {"text": "y", "timestamp": (0.52, 0.54)},
                    {"text": "en", "timestamp": (0.6, 0.68)},
                    {"text": "las", "timestamp": (0.74, 0.84)},
                    {"text": "ramas", "timestamp": (0.94, 1.24)},
                    {"text": "medio", "timestamp": (1.32, 1.52)},
                    {"text": "sumergidas", "timestamp": (1.56, 2.22)},
                    {"text": "revoloteaban", "timestamp": (2.36, 3.0)},
                    {"text": "algunos", "timestamp": (3.06, 3.38)},
                    {"text": "pájaros", "timestamp": (3.46, 3.86)},
                    {"text": "de", "timestamp": (3.92, 4.0)},
                    {"text": "quimérico", "timestamp": (4.08, 4.6)},
                    {"text": "y", "timestamp": (4.66, 4.68)},
                    {"text": "legendario", "timestamp": (4.74, 5.26)},
                    {"text": "plumajcri", "timestamp": (5.34, 5.74)},
                ],
            },
        )
263
264
265
266
267
        # CTC + LM models cannot use return_timestamps="char"
        with self.assertRaisesRegex(
            ValueError, "^CTC with LM can only predict word level timestamps, set `return_timestamps='word'`$"
        ):
            _ = speech_recognizer(filename, return_timestamps="char")
268

269
270
271
272
    @require_tf
    def test_small_model_tf(self):
        self.skipTest("Tensorflow not supported yet.")

273
274
275
    @require_torch
    def test_torch_small_no_tokenizer_files(self):
        # test that model without tokenizer file cannot be loaded
276
        with pytest.raises(OSError):
277
278
            pipeline(
                task="automatic-speech-recognition",
279
                model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
280
281
282
                framework="pt",
            )

283
284
285
286
287
288
289
290
291
    @require_torch
    @slow
    def test_torch_large(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-base-960h",
            tokenizer="facebook/wav2vec2-base-960h",
            framework="pt",
        )
292
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
293
294
295
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

Patrick von Platen's avatar
Patrick von Platen committed
296
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
297
        filename = ds[40]["file"]
298
299
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
300

301
    @slow
302
    @require_torch
303
    @slow
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    def test_return_timestamps_in_preprocess(self):
        pipe = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            chunk_length_s=8,
            stride_length_s=1,
        )
        data = load_dataset("librispeech_asr", "clean", split="test", streaming=True)
        sample = next(iter(data))
        pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="en", task="transcribe")

        res = pipe(sample["audio"]["array"])
        self.assertEqual(res, {"text": " Conquered returned to its place amidst the tents."})
        res = pipe(sample["audio"]["array"], return_timestamps=True)
        self.assertEqual(
            res,
            {
                "text": " Conquered returned to its place amidst the tents.",
322
                "chunks": [{"timestamp": (0.0, 3.36), "text": " Conquered returned to its place amidst the tents."}],
323
324
            },
        )
325
326
        pipe.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
        res = pipe(sample["audio"]["array"], return_timestamps="word")
327

328
329
330
331
332
333
        # fmt: off
        self.assertEqual(
            res,
            {
                "text": " Conquered returned to its place amidst the tents.",
                "chunks": [
334
335
336
337
338
339
340
341
342
343
                    {"text": " Conquered", "timestamp": (0.5, 1.2)},
                    {"text": " returned", "timestamp": (1.2, 1.64)},
                    {"text": " to", "timestamp": (1.64, 1.84)},
                    {"text": " its", "timestamp": (1.84, 2.02)},
                    {"text": " place", "timestamp": (2.02, 2.28)},
                    {"text": " amidst", "timestamp": (2.28, 2.78)},
                    {"text": " the", "timestamp": (2.78, 2.96)},
                    {"text": " tents.", "timestamp": (2.96, 3.48)},
                ],
            },
344
345
        )
        # fmt: on
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    @require_torch
    def test_return_timestamps_in_init(self):
        # segment-level timestamps are accepted
        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
        tokenizer = AutoTokenizer.from_pretrained("openai/whisper-tiny")
        feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny")

        dummy_speech = np.ones(100)

        pipe = pipeline(
            task="automatic-speech-recognition",
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            chunk_length_s=8,
            stride_length_s=1,
            return_timestamps=True,
        )

        _ = pipe(dummy_speech)

        # word-level timestamps are accepted
        pipe = pipeline(
            task="automatic-speech-recognition",
            model=model,
            feature_extractor=feature_extractor,
            tokenizer=tokenizer,
            chunk_length_s=8,
            stride_length_s=1,
            return_timestamps="word",
        )

        _ = pipe(dummy_speech)

        # char-level timestamps are not accepted
        with self.assertRaisesRegex(
            ValueError,
            "^Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
            "Use `return_timestamps='word'` or `return_timestamps=True` respectively.$",
        ):
            pipe = pipeline(
                task="automatic-speech-recognition",
                model=model,
                feature_extractor=feature_extractor,
                tokenizer=tokenizer,
                chunk_length_s=8,
                stride_length_s=1,
                return_timestamps="char",
            )

            _ = pipe(dummy_speech)

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    @require_torch
    @slow
    def test_torch_whisper(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        output = speech_recognizer([filename], chunk_length_s=5, batch_size=4)
        self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}])

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    @slow
    def test_find_longest_common_subsequence(self):
        max_source_positions = 1500
        processor = AutoProcessor.from_pretrained("openai/whisper-tiny")

        previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]]
        self.assertEqual(
            processor.decode(previous_sequence[0], output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
        # fmt: off
        next_sequences_1 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        self.assertEqual(
            processor.decode(next_sequences_1[0], output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )
        merge = _find_timestamp_sequence(
452
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]],
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )

        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 27.5)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (27.5, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the sequence is in the middle of the 1st next sequence
        # fmt: off
        next_sequences_2 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        # {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
489
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]],
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {
                        "text": (
                            " not worth thinking about. His instant panic was followed by a small, sharp blow high on"
                            " his chest."
                        ),
                        "timestamp": (22.56, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the previous sequence is not included in the current sequence
        # fmt: off
        next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]]
        # fmt: on
        # {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
525
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]],
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (24.96, 29.36),
                    },
                ],
            },
        )
        # last case is when the sequence is not in the first next predicted start and end of timestamp
        # fmt: off
        next_sequences_3 = [
555
            [50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934]
556
557
558
        ]
        # fmt: on
        merge = _find_timestamp_sequence(
559
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]],
560
561
562
563
564
565
566
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
567
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912]
568
569
570
571
572
573
574
575
576
577
578
579
580
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
581
                        "timestamp": (24.96, 30.96),
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
                    },
                ],
            },
        )

    @slow
    @require_torch
    def test_whisper_timestamp_prediction(self):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        array = np.concatenate(
            [ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
        )
        pipe = pipeline(
            model="openai/whisper-small",
            return_timestamps=True,
        )

        output = pipe(ds[40]["audio"])
        self.assertDictEqual(
            output,
            {
                "text": " A man said to the universe, Sir, I exist.",
                "chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}],
            },
        )

        output = pipe(array, chunk_length_s=10)
        self.assertDictEqual(
610
            nested_simplify(output),
611
612
613
614
615
616
617
618
619
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment he wore, the "
                            "cut"
                        ),
620
                        "timestamp": (5.5, 11.95),
621
622
623
624
625
626
627
                    },
                    {
                        "text": (
                            " on his chest still dripping blood, the ache of his "
                            "overstrained eyes, even the soaring arena around him "
                            "with"
                        ),
628
                        "timestamp": (11.95, 19.61),
629
630
631
                    },
                    {
                        "text": " the thousands of spectators, retrievality is not worth thinking about.",
632
                        "timestamp": (19.61, 25.0),
633
634
635
                    },
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
636
                        "timestamp": (25.0, 29.4),
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
                    },
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore, the cut on his chest still dripping blood, the ache of his "
                    "overstrained eyes, even the soaring arena around him with the "
                    "thousands of spectators, retrievality is not worth thinking about. "
                    "His instant panic was followed by a small, sharp blow high on his "
                    "chest."
                ),
            },
        )

        output = pipe(array)
        self.assertDictEqual(
            output,
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment"
                        ),
                        "timestamp": (5.5, 10.18),
                    },
                    {"text": " he wore.", "timestamp": (10.18, 11.68)},
                    {"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)},
                    {"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)},
                    {
                        "text": (
                            " Even the soaring arena around him with the thousands of spectators were trivialities"
                        ),
                        "timestamp": (17.6, 22.56),
                    },
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore. The cut on his chest still dripping blood. The ache of his "
                    "overstrained eyes. Even the soaring arena around him with the "
                    "thousands of spectators were trivialities not worth thinking about."
                ),
            },
        )

685
686
687
688
689
690
691
692
693
694
    @require_torch
    @slow
    def test_torch_speech_encoder_decoder(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-wav2vec2-large-en-de",
            feature_extractor="facebook/s2t-wav2vec2-large-en-de",
            framework="pt",
        )

Patrick von Platen's avatar
Patrick von Platen committed
695
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
696
        filename = ds[40]["file"]
697
698
699
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})

700
701
702
703
704
705
706
707
708
    @slow
    @require_torch
    def test_simple_wav2vec2(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

709
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
710
711
712
        output = asr(waveform)
        self.assertEqual(output, {"text": ""})

Patrick von Platen's avatar
Patrick von Platen committed
713
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
714
        filename = ds[40]["file"]
715
716
717
        output = asr(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

718
        filename = ds[40]["file"]
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

    @slow
    @require_torch
    @require_torchaudio
    def test_simple_s2t(self):
        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

734
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
735
736

        output = asr(waveform)
737
        self.assertEqual(output, {"text": "(Applausi)"})
738

Patrick von Platen's avatar
Patrick von Platen committed
739
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
740
        filename = ds[40]["file"]
741
742
743
        output = asr(filename)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})

744
        filename = ds[40]["file"]
745
746
747
748
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
749

Arthur's avatar
Arthur committed
750
751
752
753
754
755
756
757
758
759
760
761
    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_asr(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
762
763
764
765
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
        )
Arthur's avatar
Arthur committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        output = speech_recognizer(filename, return_timestamps=True)
        self.assertEqual(
            output,
            {
                "text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
                "chunks": [
                    {
                        "text": (
                            " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
                        ),
                        "timestamp": (0.0, 5.44),
                    }
                ],
            },
        )
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
        speech_recognizer.model.generation_config.alignment_heads = [[2, 2], [3, 0], [3, 2], [3, 3], [3, 4], [3, 5]]
        output = speech_recognizer(filename, return_timestamps="word")
        # fmt: off
        self.assertEqual(
            output,
            {
                "text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
                "chunks": [
                    {'text': ' Mr.', 'timestamp': (0.0, 1.02)},
                    {'text': ' Quilter', 'timestamp': (1.02, 1.18)},
                    {'text': ' is', 'timestamp': (1.18, 1.44)},
                    {'text': ' the', 'timestamp': (1.44, 1.58)},
                    {'text': ' apostle', 'timestamp': (1.58, 1.98)},
                    {'text': ' of', 'timestamp': (1.98, 2.3)},
                    {'text': ' the', 'timestamp': (2.3, 2.46)},
                    {'text': ' middle', 'timestamp': (2.46, 2.56)},
                    {'text': ' classes,', 'timestamp': (2.56, 3.38)},
                    {'text': ' and', 'timestamp': (3.38, 3.52)},
                    {'text': ' we', 'timestamp': (3.52, 3.6)},
                    {'text': ' are', 'timestamp': (3.6, 3.72)},
                    {'text': ' glad', 'timestamp': (3.72, 4.0)},
                    {'text': ' to', 'timestamp': (4.0, 4.26)},
                    {'text': ' welcome', 'timestamp': (4.26, 4.54)},
                    {'text': ' his', 'timestamp': (4.54, 4.92)},
                    {'text': ' gospel.', 'timestamp': (4.92, 6.66)},
                ],
            },
        )
        # fmt: on
Arthur's avatar
Arthur committed
810

811
812
813
814
815
816
817
818
        # Whisper can only predict segment level timestamps or word level, not character level
        with self.assertRaisesRegex(
            ValueError,
            "^Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
            "Use `return_timestamps='word'` or `return_timestamps=True` respectively.$",
        ):
            _ = speech_recognizer(filename, return_timestamps="char")

Arthur's avatar
Arthur committed
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_translation(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-large",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
        tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large")
        feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large")

        speech_recognizer_2 = AutomaticSpeechRecognitionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )
        output_2 = speech_recognizer_2(filename)
        self.assertEqual(output, output_2)

Arthur's avatar
Arthur committed
843
844
845
        # either use generate_kwargs or set the model's generation_config
        # model.generation_config.task = "transcribe"
        # model.generation_config.lang = "<|it|>"
Arthur's avatar
Arthur committed
846
        speech_translator = AutomaticSpeechRecognitionPipeline(
Arthur's avatar
Arthur committed
847
848
849
850
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            generate_kwargs={"task": "transcribe", "language": "<|it|>"},
Arthur's avatar
Arthur committed
851
852
        )
        output_3 = speech_translator(filename)
Arthur's avatar
Arthur committed
853
        self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."})
Arthur's avatar
Arthur committed
854

855
    @slow
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
    @require_torch
    def test_whisper_language(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]

        # 1. English-only model compatible with no language argument
        output = speech_recognizer(filename)
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
        )

        # 2. English-only Whisper does not accept the language argument
        with self.assertRaisesRegex(
            ValueError,
            "Cannot specify `task` or `langauge` for an English-only model. If the model is intended to be multilingual, "
            "pass `is_multilingual=True` to generate, or update the generation config.",
        ):
            _ = speech_recognizer(filename, generate_kwargs={"language": "en"})

        # 3. Multilingual model accepts language argument
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            framework="pt",
        )
        output = speech_recognizer(filename, generate_kwargs={"language": "en"})
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel."},
        )

    @slow
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
    @require_torch
    @require_torchaudio
    def test_xls_r_to_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-21-to-en",
            feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})

    @slow
    @require_torch
    @require_torchaudio
    def test_xls_r_from_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-en-to-15",
            feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938

    @slow
    @require_torch
    @require_torchaudio
    def test_speech_to_text_leveraged(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-2-bart-base",
            feature_extractor="patrickvonplaten/wav2vec2-2-bart-base",
            tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"),
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
939

940
941
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
942

943
    @slow
944
    @require_torch_accelerator
945
946
947
948
    def test_wav2vec2_conformer_float16(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-conformer-rope-large-960h-ft",
949
            device=torch_device,
950
951
952
953
954
955
956
957
958
959
960
961
962
            torch_dtype=torch.float16,
            framework="pt",
        )

        dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        sample = dataset[0]["audio"]

        output = speech_recognizer(sample)
        self.assertEqual(
            output,
            {"text": "MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL"},
        )

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    @require_torch
    def test_chunking_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
            chunk_length_s=10.0,
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "ZBT ZC")

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
    @require_torch
    def test_return_timestamps_ctc_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        # Take short audio to keep the test readable
        audio = ds[40]["audio"]["array"][:800]

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": " ", "timestamp": (0.0, 0.012)},
                    {"text": "Z", "timestamp": (0.012, 0.016)},
                    {"text": "B", "timestamp": (0.016, 0.02)},
                    {"text": "T", "timestamp": (0.02, 0.024)},
                    {"text": " ", "timestamp": (0.024, 0.028)},
                    {"text": "Z", "timestamp": (0.028, 0.032)},
                    {"text": "X", "timestamp": (0.032, 0.036)},
                    {"text": " ", "timestamp": (0.036, 0.04)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": "ZBT", "timestamp": (0.012, 0.024)},
                    {"text": "ZX", "timestamp": (0.028, 0.036)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    @require_torch
    @require_pyctcdecode
    def test_chunking_fast_with_lm(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
            chunk_length_s=10.0,
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        # Batch_size = 1
        output1 = speech_recognizer([audio_tiled], batch_size=1)
        self.assertEqual(output1, [{"text": ANY(str)}])
        self.assertEqual(output1[0]["text"][:6], "<s> <s")

        # batch_size = 2
        output2 = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output2, [{"text": ANY(str)}])
        self.assertEqual(output2[0]["text"][:6], "<s> <s")

        # TODO There is an offby one error because of the ratio.
        # Maybe logits get affected by the padding on this random
        # model is more likely. Add some masking ?
        # self.assertEqual(output1, output2)

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
    @require_torch
    @require_pyctcdecode
    def test_with_lm_fast(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
1064

1065
1066
1067
1068
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

1069
1070
1071
1072
1073
1074
1075
1076
        # Making sure the argument are passed to the decoder
        # Since no change happens in the result, check the error comes from
        # the `decode_beams` function.
        with self.assertRaises(TypeError) as e:
            output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2})
            self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'")
        output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2})

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    @require_torch
    @require_pyctcdecode
    def test_with_local_lm_fast(self):
        local_dir = snapshot_download("hf-internal-testing/processor_with_lm")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=local_dir,
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)

        output = speech_recognizer([audio_tiled], batch_size=2)

        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

1098
1099
    @require_torch
    @slow
1100
    def test_chunking_and_timestamps(self):
1101
1102
1103
1104
1105
1106
1107
1108
1109
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            framework="pt",
1110
            chunk_length_s=10.0,
1111
1112
1113
1114
1115
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

1116
        n_repeats = 10
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}])

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(audio.shape, (74_400,))
        self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000)
        # The audio is 74_400 / 16_000 = 4.65s long.
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": " ", "timestamp": (0.62, 0.66)},
                    {"text": "M", "timestamp": (0.68, 0.7)},
                    {"text": "A", "timestamp": (0.78, 0.8)},
                    {"text": "N", "timestamp": (0.84, 0.86)},
                    {"text": " ", "timestamp": (0.92, 0.98)},
                    {"text": "S", "timestamp": (1.06, 1.08)},
                    {"text": "A", "timestamp": (1.14, 1.16)},
                    {"text": "I", "timestamp": (1.16, 1.18)},
                    {"text": "D", "timestamp": (1.2, 1.24)},
                    {"text": " ", "timestamp": (1.24, 1.28)},
                    {"text": "T", "timestamp": (1.28, 1.32)},
                    {"text": "O", "timestamp": (1.34, 1.36)},
                    {"text": " ", "timestamp": (1.38, 1.42)},
                    {"text": "T", "timestamp": (1.42, 1.44)},
                    {"text": "H", "timestamp": (1.44, 1.46)},
                    {"text": "E", "timestamp": (1.46, 1.5)},
                    {"text": " ", "timestamp": (1.5, 1.56)},
                    {"text": "U", "timestamp": (1.58, 1.62)},
                    {"text": "N", "timestamp": (1.64, 1.68)},
                    {"text": "I", "timestamp": (1.7, 1.72)},
                    {"text": "V", "timestamp": (1.76, 1.78)},
                    {"text": "E", "timestamp": (1.84, 1.86)},
                    {"text": "R", "timestamp": (1.86, 1.9)},
                    {"text": "S", "timestamp": (1.96, 1.98)},
                    {"text": "E", "timestamp": (1.98, 2.02)},
                    {"text": " ", "timestamp": (2.02, 2.06)},
                    {"text": "S", "timestamp": (2.82, 2.86)},
                    {"text": "I", "timestamp": (2.94, 2.96)},
                    {"text": "R", "timestamp": (2.98, 3.02)},
                    {"text": " ", "timestamp": (3.06, 3.12)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": " ", "timestamp": (3.58, 3.6)},
                    {"text": "E", "timestamp": (3.66, 3.68)},
                    {"text": "X", "timestamp": (3.68, 3.7)},
                    {"text": "I", "timestamp": (3.9, 3.92)},
                    {"text": "S", "timestamp": (3.94, 3.96)},
                    {"text": "T", "timestamp": (4.0, 4.02)},
                    {"text": " ", "timestamp": (4.06, 4.1)},
                ],
            },
        )
        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.28, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.5)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    {"text": "SIR", "timestamp": (2.82, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
        output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0)
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.3, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.48)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    # Tiny change linked to chunking.
                    {"text": "SIR", "timestamp": (2.84, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
1209
1210
1211
        # CTC models must specify return_timestamps type - cannot set `return_timestamps=True` blindly
        with self.assertRaisesRegex(
            ValueError,
1212
            "^CTC can either predict character level timestamps, or word level timestamps. "
1213
1214
1215
            "Set `return_timestamps='char'` or `return_timestamps='word'` as required.$",
        ):
            _ = speech_recognizer(audio, return_timestamps=True)
1216

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
    @require_torch
    @slow
    def test_chunking_with_lm(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-base-100h-with-lm",
            chunk_length_s=10.0,
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 10
        audio = np.tile(audio, n_repeats)
        output = speech_recognizer([audio], batch_size=2)
        expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats
        expected = [{"text": expected_text.strip()}]
        self.assertEqual(output, expected)

1235
1236
1237
1238
    @require_torch
    def test_chunk_iterator(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
1239
1240
        ratio = 1
        outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0, ratio))
1241
1242
1243
1244
1245
1246
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

        # two chunks no stride
1247
        outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0, ratio))
1248
1249
1250
1251
1252
1253
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

        # two chunks incomplete last
1254
        outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0, ratio))
1255
1256
1257
1258
1259
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1260
1261
1262
1263
1264
        # one chunk since first is also last, because it contains only data
        # in the right strided part we just mark that part as non stride
        # This test is specifically crafted to trigger a bug if next chunk
        # would be ignored by the fact that all the data would be
        # contained in the strided left data.
1265
        outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5, ratio))
1266
1267
1268
1269
1270
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

1271
1272
1273
1274
1275
1276
1277
    @require_torch
    def test_chunk_iterator_stride(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1278
1279
        ratio = 1
        outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10, ratio))
1280
1281
1282
1283
1284
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 10), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100), (1, 30)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1285
        outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10, ratio))
1286
1287
1288
1289
1290
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1291
        outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0, ratio))
1292
1293
1294
1295
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)])

1296
1297
1298
1299
1300
        outs = list(chunk_iter(inputs, feature_extractor, 36, 6, 6, ratio))
        self.assertEqual(len(outs), 4)
        self.assertEqual([o["stride"] for o in outs], [(36, 0, 6), (36, 6, 6), (36, 6, 6), (28, 6, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 36), (1, 36), (1, 36), (1, 28)])

1301
1302
1303
1304
        inputs = torch.LongTensor([i % 2 for i in range(100)])
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1305
        outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5, ratio))
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
        self.assertEqual(len(outs), 5)
        self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True])
        # (0, 25)
        self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"]))
        # (25, 45)
        self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"]))
        # (45, 65)
        self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"]))
        # (65, 85)
        self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"]))
        # (85, 100)
        self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"]))

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
    @require_torch
    def test_stride(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 10)
        output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000})
        self.assertEqual(output, {"text": "OB XB  B EB BB  B EB B OB X"})

        # 0 effective ids Just take the middle one
        output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000})
1333
        self.assertEqual(output, {"text": ""})
1334
1335
1336

        # Only 1 arange.
        output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000})
1337
        self.assertEqual(output, {"text": "OB"})
1338
1339
1340

        # 2nd arange
        output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000})
1341
        self.assertEqual(output, {"text": "XB"})
1342

Nicolas Patry's avatar
Nicolas Patry committed
1343
    @slow
1344
    @require_torch_accelerator
Nicolas Patry's avatar
Nicolas Patry committed
1345
1346
1347
1348
1349
1350
    def test_slow_unfinished_sequence(self):
        from transformers import GenerationConfig

        pipe = pipeline(
            "automatic-speech-recognition",
            model="vasista22/whisper-hindi-large-v2",
1351
            device=torch_device,
Nicolas Patry's avatar
Nicolas Patry committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
        )
        # Original model wasn't trained with timestamps and has incorrect generation config
        pipe.model.generation_config = GenerationConfig.from_pretrained("openai/whisper-large-v2")

        audio = hf_hub_download("Narsil/asr_dummy", filename="hindi.ogg", repo_type="dataset")

        out = pipe(
            audio,
            return_timestamps=True,
        )
        self.assertEqual(
            out,
            {
                "chunks": [
                    {"text": "", "timestamp": (18.94, 0.0)},
                    {"text": "मिर्ची में कितने विभिन्न प्रजातियां हैं", "timestamp": (None, None)},
                ],
                "text": "मिर्ची में कितने विभिन्न प्रजातियां हैं",
            },
        )

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447

def require_ffmpeg(test_case):
    """
    Decorator marking a test that requires FFmpeg.

    These tests are skipped when FFmpeg isn't installed.

    """
    import subprocess

    try:
        subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL)
        return test_case
    except Exception:
        return unittest.skip("test requires ffmpeg")(test_case)


def bytes_iter(chunk_size, chunks):
    for i in range(chunks):
        yield bytes(range(i * chunk_size, (i + 1) * chunk_size))


@require_ffmpeg
class AudioUtilsTest(unittest.TestCase):
    def test_chunk_bytes_iter_too_big(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)})
        # This is finished, but the chunk_bytes doesn't know it yet.
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride_stream(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True})
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True}
        )
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False}
        )
        with self.assertRaises(StopIteration):
            next(iter_)