test_pipelines_automatic_speech_recognition.py 52.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
import numpy as np
18
import pytest
19
from datasets import load_dataset
20
from huggingface_hub import snapshot_download
21

22
23
24
25
from transformers import (
    MODEL_FOR_CTC_MAPPING,
    MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING,
    AutoFeatureExtractor,
26
    AutoProcessor,
27
28
29
    AutoTokenizer,
    Speech2TextForConditionalGeneration,
    Wav2Vec2ForCTC,
Arthur's avatar
Arthur committed
30
    WhisperForConditionalGeneration,
31
)
32
from transformers.pipelines import AutomaticSpeechRecognitionPipeline, pipeline
33
from transformers.pipelines.audio_utils import chunk_bytes_iter
34
from transformers.pipelines.automatic_speech_recognition import _find_timestamp_sequence, chunk_iter
35
from transformers.testing_utils import (
36
    is_pipeline_test,
37
38
    is_torch_available,
    nested_simplify,
Nicolas Patry's avatar
Nicolas Patry committed
39
    require_pyctcdecode,
40
41
42
43
44
    require_tf,
    require_torch,
    require_torchaudio,
    slow,
)
45

46
from .test_pipelines_common import ANY
47
48


49
50
51
52
if is_torch_available():
    import torch


53
# We can't use this mixin because it assumes TF support.
54
55
56
# from .test_pipelines_common import CustomInputPipelineCommonMixin


57
@is_pipeline_test
58
class AutomaticSpeechRecognitionPipelineTests(unittest.TestCase):
59
60
61
62
    model_mapping = dict(
        (list(MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING.items()) if MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING else [])
        + (MODEL_FOR_CTC_MAPPING.items() if MODEL_FOR_CTC_MAPPING else [])
    )
63

64
    def get_test_pipeline(self, model, tokenizer, processor):
65
66
67
68
69
70
71
72
        if tokenizer is None:
            # Side effect of no Fast Tokenizer class for these model, so skipping
            # But the slow tokenizer test should still run as they're quite small
            self.skipTest("No tokenizer available")
            return
            # return None, None

        speech_recognizer = AutomaticSpeechRecognitionPipeline(
73
            model=model, tokenizer=tokenizer, feature_extractor=processor
74
75
76
77
78
79
80
81
82
83
84
85
        )

        # test with a raw waveform
        audio = np.zeros((34000,))
        audio2 = np.zeros((14000,))
        return speech_recognizer, [audio, audio2]

    def run_pipeline_test(self, speech_recognizer, examples):
        audio = np.zeros((34000,))
        outputs = speech_recognizer(audio)
        self.assertEqual(outputs, {"text": ANY(str)})

86
        # Striding
87
88
89
90
        audio = {"raw": audio, "stride": (0, 4000), "sampling_rate": speech_recognizer.feature_extractor.sampling_rate}
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
91
92
93
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio)
            self.assertEqual(outputs, {"text": ANY(str)})
94
95
96
97
98
        else:
            # Non CTC models cannot use striding.
            with self.assertRaises(ValueError):
                outputs = speech_recognizer(audio)

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        # Timestamps
        audio = np.zeros((34000,))
        if speech_recognizer.type == "ctc":
            outputs = speech_recognizer(audio, return_timestamps="char")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )

            outputs = speech_recognizer(audio, return_timestamps="word")
            self.assertIsInstance(outputs["chunks"], list)
            n = len(outputs["chunks"])
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(n)],
                },
            )
123
124
125
126
        elif "Whisper" in speech_recognizer.model.__class__.__name__:
            outputs = speech_recognizer(audio, return_timestamps=True)
            self.assertIsInstance(outputs["chunks"], list)
            nb_chunks = len(outputs["chunks"])
127
            self.assertGreater(nb_chunks, 0)
128
129
130
131
132
133
134
            self.assertEqual(
                outputs,
                {
                    "text": ANY(str),
                    "chunks": [{"text": ANY(str), "timestamp": (ANY(float), ANY(float))} for i in range(nb_chunks)],
                },
            )
135
136
        else:
            # Non CTC models cannot use return_timestamps
137
138
139
            with self.assertRaisesRegex(
                ValueError, "^We cannot return_timestamps yet on non-ctc models apart from Whisper !$"
            ):
140
141
                outputs = speech_recognizer(audio, return_timestamps="char")

142
143
144
145
146
147
    @require_torch
    @slow
    def test_pt_defaults(self):
        pipeline("automatic-speech-recognition", framework="pt")

    @require_torch
148
    def test_small_model_pt(self):
149
150
151
152
153
154
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-small-mustc-en-fr-st",
            tokenizer="facebook/s2t-small-mustc-en-fr-st",
            framework="pt",
        )
155
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
156
        output = speech_recognizer(waveform)
157
        self.assertEqual(output, {"text": "(Applaudissements)"})
158
159
        output = speech_recognizer(waveform, chunk_length_s=10)
        self.assertEqual(output, {"text": "(Applaudissements)"})
160
161

        # Non CTC models cannot use return_timestamps
162
163
164
        with self.assertRaisesRegex(
            ValueError, "^We cannot return_timestamps yet on non-ctc models apart from Whisper !$"
        ):
165
            _ = speech_recognizer(waveform, return_timestamps="char")
166

167
168
169
170
171
172
173
174
175
176
177
178
179
    @slow
    @require_torch
    def test_whisper_fp16(self):
        if not torch.cuda.is_available():
            self.skipTest("Cuda is necessary for this test")
        speech_recognizer = pipeline(
            model="openai/whisper-base",
            device=0,
            torch_dtype=torch.float16,
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        speech_recognizer(waveform)

180
181
182
    @require_torch
    def test_small_model_pt_seq2seq(self):
        speech_recognizer = pipeline(
183
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
184
185
186
187
188
189
190
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": "あл ش 湯 清 ه ܬ া लᆨしث ल eか u w 全 u"})

191
192
193
194
195
196
197
198
199
200
201
    @require_torch
    def test_small_model_pt_seq2seq_gen_kwargs(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/tiny-random-speech-encoder-decoder",
            framework="pt",
        )

        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
        output = speech_recognizer(waveform, max_new_tokens=10, generate_kwargs={"num_beams": 2})
        self.assertEqual(output, {"text": "あл † γ ت ב オ 束 泣 足"})

Nicolas Patry's avatar
Nicolas Patry committed
202
203
204
205
    @slow
    @require_torch
    @require_pyctcdecode
    def test_large_model_pt_with_lm(self):
206
207
208
        dataset = load_dataset("Narsil/asr_dummy", streaming=True)
        third_item = next(iter(dataset["test"].skip(3)))
        filename = third_item["file"]
Nicolas Patry's avatar
Nicolas Patry committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm",
            framework="pt",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        output = speech_recognizer(filename)
        self.assertEqual(
            output,
            {"text": "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumaje"},
        )

        # Override back to pure CTC
        speech_recognizer.type = "ctc"
        output = speech_recognizer(filename)
        # plumajre != plumaje
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
230
231
232
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajre"
                )
Nicolas Patry's avatar
Nicolas Patry committed
233
234
235
            },
        )

236
237
238
239
240
241
        speech_recognizer.type = "ctc_with_lm"
        # Simple test with CTC with LM, chunking + timestamps
        output = speech_recognizer(filename, chunk_length_s=2.0, return_timestamps="word")
        self.assertEqual(
            output,
            {
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
                "text": (
                    "y en las ramas medio sumergidas revoloteaban algunos pájaros de quimérico y legendario plumajcri"
                ),
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                "chunks": [
                    {"text": "y", "timestamp": (0.52, 0.54)},
                    {"text": "en", "timestamp": (0.6, 0.68)},
                    {"text": "las", "timestamp": (0.74, 0.84)},
                    {"text": "ramas", "timestamp": (0.94, 1.24)},
                    {"text": "medio", "timestamp": (1.32, 1.52)},
                    {"text": "sumergidas", "timestamp": (1.56, 2.22)},
                    {"text": "revoloteaban", "timestamp": (2.36, 3.0)},
                    {"text": "algunos", "timestamp": (3.06, 3.38)},
                    {"text": "pájaros", "timestamp": (3.46, 3.86)},
                    {"text": "de", "timestamp": (3.92, 4.0)},
                    {"text": "quimérico", "timestamp": (4.08, 4.6)},
                    {"text": "y", "timestamp": (4.66, 4.68)},
                    {"text": "legendario", "timestamp": (4.74, 5.26)},
                    {"text": "plumajcri", "timestamp": (5.34, 5.74)},
                ],
            },
        )

264
265
266
267
    @require_tf
    def test_small_model_tf(self):
        self.skipTest("Tensorflow not supported yet.")

268
269
270
    @require_torch
    def test_torch_small_no_tokenizer_files(self):
        # test that model without tokenizer file cannot be loaded
271
        with pytest.raises(OSError):
272
273
            pipeline(
                task="automatic-speech-recognition",
274
                model="patrickvonplaten/tiny-wav2vec2-no-tokenizer",
275
276
277
                framework="pt",
            )

278
279
280
281
282
283
284
285
286
    @require_torch
    @slow
    def test_torch_large(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-base-960h",
            tokenizer="facebook/wav2vec2-base-960h",
            framework="pt",
        )
287
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
288
289
290
        output = speech_recognizer(waveform)
        self.assertEqual(output, {"text": ""})

Patrick von Platen's avatar
Patrick von Platen committed
291
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
292
        filename = ds[40]["file"]
293
294
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    @require_torch
    def test_return_timestamps_in_preprocess(self):
        pipe = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            chunk_length_s=8,
            stride_length_s=1,
        )
        data = load_dataset("librispeech_asr", "clean", split="test", streaming=True)
        sample = next(iter(data))
        pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="en", task="transcribe")

        res = pipe(sample["audio"]["array"])
        self.assertEqual(res, {"text": " Conquered returned to its place amidst the tents."})
        res = pipe(sample["audio"]["array"], return_timestamps=True)
        self.assertEqual(
            res,
            {
                "text": " Conquered returned to its place amidst the tents.",
                "chunks": [{"text": " Conquered returned to its place amidst the tents.", "timestamp": (0.0, 3.36)}],
            },
        )

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    @require_torch
    @slow
    def test_torch_whisper(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        output = speech_recognizer([filename], chunk_length_s=5, batch_size=4)
        self.assertEqual(output, [{"text": " A man said to the universe, Sir, I exist."}])

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    @slow
    def test_find_longest_common_subsequence(self):
        max_source_positions = 1500
        processor = AutoProcessor.from_pretrained("openai/whisper-tiny")

        previous_sequence = [[51492, 406, 3163, 1953, 466, 13, 51612, 51612]]
        self.assertEqual(
            processor.decode(previous_sequence[0], output_offsets=True),
            {
                "text": " not worth thinking about.",
                "offsets": [{"text": " not worth thinking about.", "timestamp": (22.56, 24.96)}],
            },
        )

        # Merge when the previous sequence is a suffix of the next sequence
        # fmt: off
        next_sequences_1 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 50614, 50614, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        self.assertEqual(
            processor.decode(next_sequences_1[0], output_offsets=True),
            {
                "text": (
                    " of spectators, retrievality is not worth thinking about. His instant panic was followed by a"
                    " small, sharp blow high on his chest.<|endoftext|>"
                ),
                "offsets": [
                    {"text": " of spectators, retrievality is not worth thinking about.", "timestamp": (0.0, 5.0)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (5.0, 9.4),
                    },
                ],
            },
        )
        merge = _find_timestamp_sequence(
372
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_1, (480_000, 120_000, 0)]],
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )

        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51739, 51739, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 27.5)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (27.5, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the sequence is in the middle of the 1st next sequence
        # fmt: off
        next_sequences_2 = [
            [50364, 295, 6177, 3391, 11, 19817, 3337, 507, 307, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50834, 50257]
        ]
        # fmt: on
        # {'text': ' of spectators, retrievality is not worth thinking about. His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
409
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_2, (480_000, 120_000, 0)]],
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51959],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {
                        "text": (
                            " not worth thinking about. His instant panic was followed by a small, sharp blow high on"
                            " his chest."
                        ),
                        "timestamp": (22.56, 31.900000000000002),
                    },
                ],
            },
        )

        # Merge when the previous sequence is not included in the current sequence
        # fmt: off
        next_sequences_3 = [[50364, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50584, 50257]]
        # fmt: on
        # {'text': ' His instant panic was followed by a small, sharp blow high on his chest.','timestamp': (0.0, 9.4)}
        merge = _find_timestamp_sequence(
445
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 120_000, 0)]],
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51832],
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
                        "timestamp": (24.96, 29.36),
                    },
                ],
            },
        )
        # last case is when the sequence is not in the first next predicted start and end of timestamp
        # fmt: off
        next_sequences_3 = [
475
            [50364, 2812, 9836, 14783, 390, 406, 3163, 1953, 466, 13, 50634, 50634, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 50934]
476
477
478
        ]
        # fmt: on
        merge = _find_timestamp_sequence(
479
            [[previous_sequence, (480_000, 0, 0)], [next_sequences_3, (480_000, 167_000, 0)]],
480
481
482
483
484
485
486
            processor.tokenizer,
            processor.feature_extractor,
            max_source_positions,
        )
        # fmt: off
        self.assertEqual(
            merge,
487
            [51492, 406, 3163, 1953, 466, 13, 51612, 51612, 2812, 9836, 14783, 390, 6263, 538, 257, 1359, 11, 8199, 6327, 1090, 322, 702, 7443, 13, 51912]
488
489
490
491
492
493
494
495
496
497
498
499
500
        )
        # fmt: on
        self.assertEqual(
            processor.decode(merge, output_offsets=True),
            {
                "text": (
                    " not worth thinking about. His instant panic was followed by a small, sharp blow high on his"
                    " chest."
                ),
                "offsets": [
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
501
                        "timestamp": (24.96, 30.96),
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
                    },
                ],
            },
        )

    @slow
    @require_torch
    def test_whisper_timestamp_prediction(self):
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        array = np.concatenate(
            [ds[40]["audio"]["array"], ds[41]["audio"]["array"], ds[42]["audio"]["array"], ds[43]["audio"]["array"]]
        )
        pipe = pipeline(
            model="openai/whisper-small",
            return_timestamps=True,
        )

        output = pipe(ds[40]["audio"])
        self.assertDictEqual(
            output,
            {
                "text": " A man said to the universe, Sir, I exist.",
                "chunks": [{"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 4.26)}],
            },
        )

        output = pipe(array, chunk_length_s=10)
        self.assertDictEqual(
530
            nested_simplify(output),
531
532
533
534
535
536
537
538
539
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment he wore, the "
                            "cut"
                        ),
540
                        "timestamp": (5.5, 11.95),
541
542
543
544
545
546
547
                    },
                    {
                        "text": (
                            " on his chest still dripping blood, the ache of his "
                            "overstrained eyes, even the soaring arena around him "
                            "with"
                        ),
548
                        "timestamp": (11.95, 19.61),
549
550
551
                    },
                    {
                        "text": " the thousands of spectators, retrievality is not worth thinking about.",
552
                        "timestamp": (19.61, 25.0),
553
554
555
                    },
                    {
                        "text": " His instant panic was followed by a small, sharp blow high on his chest.",
556
                        "timestamp": (25.0, 29.4),
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
                    },
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore, the cut on his chest still dripping blood, the ache of his "
                    "overstrained eyes, even the soaring arena around him with the "
                    "thousands of spectators, retrievality is not worth thinking about. "
                    "His instant panic was followed by a small, sharp blow high on his "
                    "chest."
                ),
            },
        )

        output = pipe(array)
        self.assertDictEqual(
            output,
            {
                "chunks": [
                    {"text": " A man said to the universe, Sir, I exist.", "timestamp": (0.0, 5.5)},
                    {
                        "text": (
                            " Sweat covered Brion's body, trickling into the "
                            "tight-loan cloth that was the only garment"
                        ),
                        "timestamp": (5.5, 10.18),
                    },
                    {"text": " he wore.", "timestamp": (10.18, 11.68)},
                    {"text": " The cut on his chest still dripping blood.", "timestamp": (11.68, 14.92)},
                    {"text": " The ache of his overstrained eyes.", "timestamp": (14.92, 17.6)},
                    {
                        "text": (
                            " Even the soaring arena around him with the thousands of spectators were trivialities"
                        ),
                        "timestamp": (17.6, 22.56),
                    },
                    {"text": " not worth thinking about.", "timestamp": (22.56, 24.96)},
                ],
                "text": (
                    " A man said to the universe, Sir, I exist. Sweat covered Brion's "
                    "body, trickling into the tight-loan cloth that was the only garment "
                    "he wore. The cut on his chest still dripping blood. The ache of his "
                    "overstrained eyes. Even the soaring arena around him with the "
                    "thousands of spectators were trivialities not worth thinking about."
                ),
            },
        )

605
606
607
608
609
610
611
612
613
614
    @require_torch
    @slow
    def test_torch_speech_encoder_decoder(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/s2t-wav2vec2-large-en-de",
            feature_extractor="facebook/s2t-wav2vec2-large-en-de",
            framework="pt",
        )

Patrick von Platen's avatar
Patrick von Platen committed
615
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
616
        filename = ds[40]["file"]
617
618
619
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": 'Ein Mann sagte zum Universum : " Sir, ich existiert! "'})

620
621
622
623
624
625
626
627
628
    @slow
    @require_torch
    def test_simple_wav2vec2(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

629
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
630
631
632
        output = asr(waveform)
        self.assertEqual(output, {"text": ""})

Patrick von Platen's avatar
Patrick von Platen committed
633
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
634
        filename = ds[40]["file"]
635
636
637
        output = asr(filename)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

638
        filename = ds[40]["file"]
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "A MAN SAID TO THE UNIVERSE SIR I EXIST"})

    @slow
    @require_torch
    @require_torchaudio
    def test_simple_s2t(self):
        model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        tokenizer = AutoTokenizer.from_pretrained("facebook/s2t-small-mustc-en-it-st")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/s2t-small-mustc-en-it-st")

        asr = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor)

654
        waveform = np.tile(np.arange(1000, dtype=np.float32), 34)
655
656

        output = asr(waveform)
657
        self.assertEqual(output, {"text": "(Applausi)"})
658

Patrick von Platen's avatar
Patrick von Platen committed
659
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
660
        filename = ds[40]["file"]
661
662
663
        output = asr(filename)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})

664
        filename = ds[40]["file"]
665
666
667
668
        with open(filename, "rb") as f:
            data = f.read()
        output = asr(data)
        self.assertEqual(output, {"text": "Un uomo disse all'universo: \"Signore, io esisto."})
669

Arthur's avatar
Arthur committed
670
671
672
673
674
675
676
677
678
679
680
681
    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_asr(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-tiny.en",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        filename = ds[0]["file"]
        output = speech_recognizer(filename)
682
683
684
685
        self.assertEqual(
            output,
            {"text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."},
        )
Arthur's avatar
Arthur committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        output = speech_recognizer(filename, return_timestamps=True)
        self.assertEqual(
            output,
            {
                "text": " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.",
                "chunks": [
                    {
                        "text": (
                            " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
                        ),
                        "timestamp": (0.0, 5.44),
                    }
                ],
            },
        )
Arthur's avatar
Arthur committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

    @slow
    @require_torch
    @require_torchaudio
    def test_simple_whisper_translation(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="openai/whisper-large",
            framework="pt",
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": " A man said to the universe, Sir, I exist."})

        model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
        tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large")
        feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-large")

        speech_recognizer_2 = AutomaticSpeechRecognitionPipeline(
            model=model, tokenizer=tokenizer, feature_extractor=feature_extractor
        )
        output_2 = speech_recognizer_2(filename)
        self.assertEqual(output, output_2)

Arthur's avatar
Arthur committed
726
727
728
        # either use generate_kwargs or set the model's generation_config
        # model.generation_config.task = "transcribe"
        # model.generation_config.lang = "<|it|>"
Arthur's avatar
Arthur committed
729
        speech_translator = AutomaticSpeechRecognitionPipeline(
Arthur's avatar
Arthur committed
730
731
732
733
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            generate_kwargs={"task": "transcribe", "language": "<|it|>"},
Arthur's avatar
Arthur committed
734
735
        )
        output_3 = speech_translator(filename)
Arthur's avatar
Arthur committed
736
        self.assertEqual(output_3, {"text": " Un uomo ha detto all'universo, Sir, esiste."})
Arthur's avatar
Arthur committed
737

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    @slow
    @require_torch
    @require_torchaudio
    def test_xls_r_to_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-21-to-en",
            feature_extractor="facebook/wav2vec2-xls-r-1b-21-to-en",
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "A man said to the universe: “Sir, I exist."})

    @slow
    @require_torch
    @require_torchaudio
    def test_xls_r_from_en(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="facebook/wav2vec2-xls-r-1b-en-to-15",
            feature_extractor="facebook/wav2vec2-xls-r-1b-en-to-15",
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "Ein Mann sagte zu dem Universum, Sir, ich bin da."})
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

    @slow
    @require_torch
    @require_torchaudio
    def test_speech_to_text_leveraged(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-2-bart-base",
            feature_extractor="patrickvonplaten/wav2vec2-2-bart-base",
            tokenizer=AutoTokenizer.from_pretrained("patrickvonplaten/wav2vec2-2-bart-base"),
            framework="pt",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        filename = ds[40]["file"]
784

785
786
        output = speech_recognizer(filename)
        self.assertEqual(output, {"text": "a man said to the universe sir i exist"})
787

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
    @require_torch
    def test_chunking_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
            chunk_length_s=10.0,
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "ZBT ZC")

805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
    @require_torch
    def test_return_timestamps_ctc_fast(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        # Take short audio to keep the test readable
        audio = ds[40]["audio"]["array"][:800]

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": " ", "timestamp": (0.0, 0.012)},
                    {"text": "Z", "timestamp": (0.012, 0.016)},
                    {"text": "B", "timestamp": (0.016, 0.02)},
                    {"text": "T", "timestamp": (0.02, 0.024)},
                    {"text": " ", "timestamp": (0.024, 0.028)},
                    {"text": "Z", "timestamp": (0.028, 0.032)},
                    {"text": "X", "timestamp": (0.032, 0.036)},
                    {"text": " ", "timestamp": (0.036, 0.04)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "ZBT ZX G",
                "chunks": [
                    {"text": "ZBT", "timestamp": (0.012, 0.024)},
                    {"text": "ZX", "timestamp": (0.028, 0.036)},
                    {"text": "G", "timestamp": (0.04, 0.044)},
                ],
            },
        )

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
    @require_torch
    @require_pyctcdecode
    def test_chunking_fast_with_lm(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
            chunk_length_s=10.0,
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
        # Batch_size = 1
        output1 = speech_recognizer([audio_tiled], batch_size=1)
        self.assertEqual(output1, [{"text": ANY(str)}])
        self.assertEqual(output1[0]["text"][:6], "<s> <s")

        # batch_size = 2
        output2 = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output2, [{"text": ANY(str)}])
        self.assertEqual(output2[0]["text"][:6], "<s> <s")

        # TODO There is an offby one error because of the ratio.
        # Maybe logits get affected by the padding on this random
        # model is more likely. Add some masking ?
        # self.assertEqual(output1, output2)

876
877
878
879
880
881
882
883
884
885
886
887
888
    @require_torch
    @require_pyctcdecode
    def test_with_lm_fast(self):
        speech_recognizer = pipeline(
            model="hf-internal-testing/processor_with_lm",
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)
889

890
891
892
893
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

894
895
896
897
898
899
900
901
        # Making sure the argument are passed to the decoder
        # Since no change happens in the result, check the error comes from
        # the `decode_beams` function.
        with self.assertRaises(TypeError) as e:
            output = speech_recognizer([audio_tiled], decoder_kwargs={"num_beams": 2})
            self.assertContains(e.msg, "TypeError: decode_beams() got an unexpected keyword argument 'num_beams'")
        output = speech_recognizer([audio_tiled], decoder_kwargs={"beam_width": 2})

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
    @require_torch
    @require_pyctcdecode
    def test_with_local_lm_fast(self):
        local_dir = snapshot_download("hf-internal-testing/processor_with_lm")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=local_dir,
        )
        self.assertEqual(speech_recognizer.type, "ctc_with_lm")

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 2
        audio_tiled = np.tile(audio, n_repeats)

        output = speech_recognizer([audio_tiled], batch_size=2)

        self.assertEqual(output, [{"text": ANY(str)}])
        self.assertEqual(output[0]["text"][:6], "<s> <s")

923
924
    @require_torch
    @slow
925
    def test_chunking_and_timestamps(self):
926
927
928
929
930
931
932
933
934
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model=model,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            framework="pt",
935
            chunk_length_s=10.0,
936
937
938
939
940
        )

        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

941
        n_repeats = 10
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        audio_tiled = np.tile(audio, n_repeats)
        output = speech_recognizer([audio_tiled], batch_size=2)
        self.assertEqual(output, [{"text": ("A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats).strip()}])

        output = speech_recognizer(audio, return_timestamps="char")
        self.assertEqual(audio.shape, (74_400,))
        self.assertEqual(speech_recognizer.feature_extractor.sampling_rate, 16_000)
        # The audio is 74_400 / 16_000 = 4.65s long.
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": " ", "timestamp": (0.62, 0.66)},
                    {"text": "M", "timestamp": (0.68, 0.7)},
                    {"text": "A", "timestamp": (0.78, 0.8)},
                    {"text": "N", "timestamp": (0.84, 0.86)},
                    {"text": " ", "timestamp": (0.92, 0.98)},
                    {"text": "S", "timestamp": (1.06, 1.08)},
                    {"text": "A", "timestamp": (1.14, 1.16)},
                    {"text": "I", "timestamp": (1.16, 1.18)},
                    {"text": "D", "timestamp": (1.2, 1.24)},
                    {"text": " ", "timestamp": (1.24, 1.28)},
                    {"text": "T", "timestamp": (1.28, 1.32)},
                    {"text": "O", "timestamp": (1.34, 1.36)},
                    {"text": " ", "timestamp": (1.38, 1.42)},
                    {"text": "T", "timestamp": (1.42, 1.44)},
                    {"text": "H", "timestamp": (1.44, 1.46)},
                    {"text": "E", "timestamp": (1.46, 1.5)},
                    {"text": " ", "timestamp": (1.5, 1.56)},
                    {"text": "U", "timestamp": (1.58, 1.62)},
                    {"text": "N", "timestamp": (1.64, 1.68)},
                    {"text": "I", "timestamp": (1.7, 1.72)},
                    {"text": "V", "timestamp": (1.76, 1.78)},
                    {"text": "E", "timestamp": (1.84, 1.86)},
                    {"text": "R", "timestamp": (1.86, 1.9)},
                    {"text": "S", "timestamp": (1.96, 1.98)},
                    {"text": "E", "timestamp": (1.98, 2.02)},
                    {"text": " ", "timestamp": (2.02, 2.06)},
                    {"text": "S", "timestamp": (2.82, 2.86)},
                    {"text": "I", "timestamp": (2.94, 2.96)},
                    {"text": "R", "timestamp": (2.98, 3.02)},
                    {"text": " ", "timestamp": (3.06, 3.12)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": " ", "timestamp": (3.58, 3.6)},
                    {"text": "E", "timestamp": (3.66, 3.68)},
                    {"text": "X", "timestamp": (3.68, 3.7)},
                    {"text": "I", "timestamp": (3.9, 3.92)},
                    {"text": "S", "timestamp": (3.94, 3.96)},
                    {"text": "T", "timestamp": (4.0, 4.02)},
                    {"text": " ", "timestamp": (4.06, 4.1)},
                ],
            },
        )
        output = speech_recognizer(audio, return_timestamps="word")
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.28, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.5)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    {"text": "SIR", "timestamp": (2.82, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
        output = speech_recognizer(audio, return_timestamps="word", chunk_length_s=2.0)
        self.assertEqual(
            output,
            {
                "text": "A MAN SAID TO THE UNIVERSE SIR I EXIST",
                "chunks": [
                    {"text": "A", "timestamp": (0.6, 0.62)},
                    {"text": "MAN", "timestamp": (0.68, 0.86)},
                    {"text": "SAID", "timestamp": (1.06, 1.24)},
                    {"text": "TO", "timestamp": (1.3, 1.36)},
                    {"text": "THE", "timestamp": (1.42, 1.48)},
                    {"text": "UNIVERSE", "timestamp": (1.58, 2.02)},
                    # Tiny change linked to chunking.
                    {"text": "SIR", "timestamp": (2.84, 3.02)},
                    {"text": "I", "timestamp": (3.5, 3.52)},
                    {"text": "EXIST", "timestamp": (3.66, 4.02)},
                ],
            },
        )
1034

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    @require_torch
    @slow
    def test_chunking_with_lm(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="patrickvonplaten/wav2vec2-base-100h-with-lm",
            chunk_length_s=10.0,
        )
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation").sort("id")
        audio = ds[40]["audio"]["array"]

        n_repeats = 10
        audio = np.tile(audio, n_repeats)
        output = speech_recognizer([audio], batch_size=2)
        expected_text = "A MAN SAID TO THE UNIVERSE SIR I EXIST " * n_repeats
        expected = [{"text": expected_text.strip()}]
        self.assertEqual(output, expected)

1053
1054
1055
1056
    @require_torch
    def test_chunk_iterator(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
1057
1058
        ratio = 1
        outs = list(chunk_iter(inputs, feature_extractor, 100, 0, 0, ratio))
1059
1060
1061
1062
1063
1064
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

        # two chunks no stride
1065
        outs = list(chunk_iter(inputs, feature_extractor, 50, 0, 0, ratio))
1066
1067
1068
1069
1070
1071
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(50, 0, 0), (50, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 50), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

        # two chunks incomplete last
1072
        outs = list(chunk_iter(inputs, feature_extractor, 80, 0, 0, ratio))
1073
1074
1075
1076
1077
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 0), (20, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1078
1079
1080
1081
1082
        # one chunk since first is also last, because it contains only data
        # in the right strided part we just mark that part as non stride
        # This test is specifically crafted to trigger a bug if next chunk
        # would be ignored by the fact that all the data would be
        # contained in the strided left data.
1083
        outs = list(chunk_iter(inputs, feature_extractor, 105, 5, 5, ratio))
1084
1085
1086
1087
1088
        self.assertEqual(len(outs), 1)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100)])
        self.assertEqual([o["is_last"] for o in outs], [True])

1089
1090
1091
1092
1093
1094
1095
    @require_torch
    def test_chunk_iterator_stride(self):
        feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
        inputs = torch.arange(100).long()
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1096
1097
        ratio = 1
        outs = list(chunk_iter(inputs, feature_extractor, 100, 20, 10, ratio))
1098
1099
1100
1101
1102
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(100, 0, 10), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 100), (1, 30)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1103
        outs = list(chunk_iter(inputs, feature_extractor, 80, 20, 10, ratio))
1104
1105
1106
1107
1108
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(80, 0, 10), (50, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 80), (1, 50)])
        self.assertEqual([o["is_last"] for o in outs], [False, True])

1109
        outs = list(chunk_iter(inputs, feature_extractor, 90, 20, 0, ratio))
1110
1111
1112
1113
        self.assertEqual(len(outs), 2)
        self.assertEqual([o["stride"] for o in outs], [(90, 0, 0), (30, 20, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 90), (1, 30)])

1114
1115
1116
1117
1118
        outs = list(chunk_iter(inputs, feature_extractor, 36, 6, 6, ratio))
        self.assertEqual(len(outs), 4)
        self.assertEqual([o["stride"] for o in outs], [(36, 0, 6), (36, 6, 6), (36, 6, 6), (28, 6, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 36), (1, 36), (1, 36), (1, 28)])

1119
1120
1121
1122
        inputs = torch.LongTensor([i % 2 for i in range(100)])
        input_values = feature_extractor(inputs, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt")[
            "input_values"
        ]
1123
        outs = list(chunk_iter(inputs, feature_extractor, 30, 5, 5, ratio))
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
        self.assertEqual(len(outs), 5)
        self.assertEqual([o["stride"] for o in outs], [(30, 0, 5), (30, 5, 5), (30, 5, 5), (30, 5, 5), (20, 5, 0)])
        self.assertEqual([o["input_values"].shape for o in outs], [(1, 30), (1, 30), (1, 30), (1, 30), (1, 20)])
        self.assertEqual([o["is_last"] for o in outs], [False, False, False, False, True])
        # (0, 25)
        self.assertEqual(nested_simplify(input_values[:, :30]), nested_simplify(outs[0]["input_values"]))
        # (25, 45)
        self.assertEqual(nested_simplify(input_values[:, 20:50]), nested_simplify(outs[1]["input_values"]))
        # (45, 65)
        self.assertEqual(nested_simplify(input_values[:, 40:70]), nested_simplify(outs[2]["input_values"]))
        # (65, 85)
        self.assertEqual(nested_simplify(input_values[:, 60:90]), nested_simplify(outs[3]["input_values"]))
        # (85, 100)
        self.assertEqual(nested_simplify(input_values[:, 80:100]), nested_simplify(outs[4]["input_values"]))

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
    @require_torch
    def test_stride(self):
        speech_recognizer = pipeline(
            task="automatic-speech-recognition",
            model="hf-internal-testing/tiny-random-wav2vec2",
        )
        waveform = np.tile(np.arange(1000, dtype=np.float32), 10)
        output = speech_recognizer({"raw": waveform, "stride": (0, 0), "sampling_rate": 16_000})
        self.assertEqual(output, {"text": "OB XB  B EB BB  B EB B OB X"})

        # 0 effective ids Just take the middle one
        output = speech_recognizer({"raw": waveform, "stride": (5000, 5000), "sampling_rate": 16_000})
1151
        self.assertEqual(output, {"text": ""})
1152
1153
1154

        # Only 1 arange.
        output = speech_recognizer({"raw": waveform, "stride": (0, 9000), "sampling_rate": 16_000})
1155
        self.assertEqual(output, {"text": "OB"})
1156
1157
1158

        # 2nd arange
        output = speech_recognizer({"raw": waveform, "stride": (1000, 8000), "sampling_rate": 16_000})
1159
        self.assertEqual(output, {"text": "XB"})
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235


def require_ffmpeg(test_case):
    """
    Decorator marking a test that requires FFmpeg.

    These tests are skipped when FFmpeg isn't installed.

    """
    import subprocess

    try:
        subprocess.check_output(["ffmpeg", "-h"], stderr=subprocess.DEVNULL)
        return test_case
    except Exception:
        return unittest.skip("test requires ffmpeg")(test_case)


def bytes_iter(chunk_size, chunks):
    for i in range(chunks):
        yield bytes(range(i * chunk_size, (i + 1) * chunk_size))


@require_ffmpeg
class AudioUtilsTest(unittest.TestCase):
    def test_chunk_bytes_iter_too_big(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 10, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(0, 0)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0)})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (0, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 3, stride=(1, 1)))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x01\x02\x03", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x02\x03\x04", "stride": (1, 1)})
        # This is finished, but the chunk_bytes doesn't know it yet.
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 1)})
        self.assertEqual(next(iter_), {"raw": b"\x04\x05", "stride": (1, 0)})
        with self.assertRaises(StopIteration):
            next(iter_)

    def test_chunk_bytes_iter_stride_stream(self):
        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=2), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 5, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04", "stride": (0, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x03\x04\x05\x06\x07", "stride": (1, 1), "partial": False})
        self.assertEqual(next(iter_), {"raw": b"\x06\x07\x08", "stride": (1, 0), "partial": False})
        with self.assertRaises(StopIteration):
            next(iter_)

        iter_ = iter(chunk_bytes_iter(bytes_iter(chunk_size=3, chunks=3), 10, stride=(1, 1), stream=True))
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02", "stride": (0, 0), "partial": True})
        self.assertEqual(next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05", "stride": (0, 0), "partial": True})
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": True}
        )
        self.assertEqual(
            next(iter_), {"raw": b"\x00\x01\x02\x03\x04\x05\x06\x07\x08", "stride": (0, 0), "partial": False}
        )
        with self.assertRaises(StopIteration):
            next(iter_)