test_modeling_reformer.py 50.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8 # Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

18
from transformers import ReformerConfig, is_torch_available
19
20
21
22
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
23
    require_torch_multi_gpu,
24
25
26
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
27
28

from .test_configuration_common import ConfigTester
29
from .test_generation_utils import GenerationTesterMixin
30
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
31
32
33


if is_torch_available():
34
    import torch
35
    from torch import nn
36

Patrick von Platen's avatar
Patrick von Platen committed
37
    from transformers import (
38
        REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
39
        ReformerForMaskedLM,
40
41
42
        ReformerForQuestionAnswering,
        ReformerForSequenceClassification,
        ReformerLayer,
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
46
47
48
49
50
51
52
        ReformerModel,
        ReformerModelWithLMHead,
        ReformerTokenizer,
    )


class ReformerModelTester:
    def __init__(
        self,
        parent,
53
54
55
56
57
58
59
60
61
62
63
64
65
        batch_size=13,
        seq_length=32,
        is_training=True,
        is_decoder=True,
        use_input_mask=True,
        use_labels=True,
        vocab_size=32,
        attention_head_size=16,
        hidden_size=32,
        num_attention_heads=2,
        local_attn_chunk_length=4,
        local_num_chunks_before=1,
        local_num_chunks_after=0,
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
70
        num_buckets=None,
        num_hashes=1,
        lsh_attn_chunk_length=None,
        lsh_num_chunks_before=None,
        lsh_num_chunks_after=None,
71
72
73
74
75
76
        chunk_size_lm_head=0,
        chunk_size_feed_forward=0,
        feed_forward_size=32,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        local_attention_probs_dropout_prob=0.1,
Patrick von Platen's avatar
Patrick von Platen committed
77
        lsh_attention_probs_dropout_prob=None,
78
79
80
81
82
83
84
85
86
87
        max_position_embeddings=512,
        initializer_range=0.02,
        axial_norm_std=1.0,
        layer_norm_eps=1e-12,
        axial_pos_embds=True,
        axial_pos_shape=[4, 8],
        axial_pos_embds_dim=[16, 16],
        attn_layers=["local", "local", "local", "local"],
        pad_token_id=0,
        eos_token_id=2,
Patrick von Platen's avatar
Patrick von Platen committed
88
        scope=None,
89
90
        hash_seed=0,
        num_labels=2,
Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.is_decoder = is_decoder
        self.use_input_mask = use_input_mask
98
        self.use_labels = use_labels
Patrick von Platen's avatar
Patrick von Platen committed
99
100
101
102
        self.vocab_size = vocab_size
        self.attention_head_size = attention_head_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
103
        self.num_hidden_layers = len(attn_layers) if attn_layers is not None else 0
Patrick von Platen's avatar
Patrick von Platen committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        self.local_attn_chunk_length = local_attn_chunk_length
        self.local_num_chunks_after = local_num_chunks_after
        self.local_num_chunks_before = local_num_chunks_before
        self.num_hashes = num_hashes
        self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
        self.lsh_attn_chunk_length = lsh_attn_chunk_length
        self.lsh_num_chunks_after = lsh_num_chunks_after
        self.lsh_num_chunks_before = lsh_num_chunks_before
        self.hidden_act = hidden_act
        self.feed_forward_size = feed_forward_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
        self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.axial_pos_embds = axial_pos_embds
        self.axial_pos_shape = tuple(axial_pos_shape)
        self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
        self.axial_norm_std = axial_norm_std
        self.chunk_size_lm_head = chunk_size_lm_head
        self.chunk_size_feed_forward = chunk_size_feed_forward
        self.scope = scope
        self.attn_layers = attn_layers
        self.pad_token_id = pad_token_id
        self.hash_seed = hash_seed

        attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length
        num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after
        num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before

        self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0)
        self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length
        self.chunk_length = attn_chunk_length
138
        self.num_labels = num_labels
Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
142
143
144

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
145
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
146

147
148
149
150
        choice_labels = None
        if self.use_labels:
            choice_labels = ids_tensor([self.batch_size], 2)

151
152
153
154
155
156
157
158
159
160
161
        config = self.get_config()

        return (
            config,
            input_ids,
            input_mask,
            choice_labels,
        )

    def get_config(self):
        return ReformerConfig(
Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            feed_forward_size=self.feed_forward_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob,
            lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            is_decoder=self.is_decoder,
            axial_pos_embds=self.axial_pos_embds,
            axial_pos_shape=self.axial_pos_shape,
            axial_pos_embds_dim=self.axial_pos_embds_dim,
            local_attn_chunk_length=self.local_attn_chunk_length,
            local_num_chunks_after=self.local_num_chunks_after,
            local_num_chunks_before=self.local_num_chunks_before,
            num_hashes=self.num_hashes,
            num_buckets=self.num_buckets,
            lsh_attn_chunk_length=self.lsh_attn_chunk_length,
            lsh_num_chunks_after=self.lsh_num_chunks_after,
            lsh_num_chunks_before=self.lsh_num_chunks_before,
            attn_layers=self.attn_layers,
            pad_token_id=self.pad_token_id,
            hash_seed=self.hash_seed,
        )

189
190
191
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 100
192
        config.axial_pos_shape = (4, 25)
193
        config.is_decoder = False
194
195
        return config

196
    def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
197
198
199
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
Patrick von Platen's avatar
Patrick von Platen committed
202
203

        # 2 * hidden_size because we use reversible resnet layers
Stas Bekman's avatar
Stas Bekman committed
204
205
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size)
Patrick von Platen's avatar
Patrick von Platen committed
206
207
        )

208
    def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels):
209
210
211
        if not self.is_training:
            return

212
213
214
        config.is_decoder = False
        config.lsh_num_chunks_after = 1
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
215
        model.to(torch_device)
216
        model.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
217
        loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"]
Patrick von Platen's avatar
Patrick von Platen committed
218
219
        loss.backward()

220
    def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels):
221
222
        config.lsh_num_chunks_after = 0
        config.is_decoder = True
Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
226
        result = model(input_ids, attention_mask=input_mask, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
227
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Patrick von Platen's avatar
Patrick von Platen committed
228

229
230
231
232
233
    def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
234
        result = model(input_ids, attention_mask=input_mask, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
235
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
236
237
238
239

    def create_and_check_reformer_model_with_attn_mask(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        # no special position embeddings
        config.axial_pos_embds = False
        config.is_decoder = is_decoder

        if self.lsh_attn_chunk_length is not None:
            # need to set chunk length equal sequence length to be certain that chunking works
            config.lsh_attn_chunk_length = self.seq_length

        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
        # set all position encodings to zero so that postions don't matter
        with torch.no_grad():
            embedding = model.embeddings.position_embeddings.embedding
254
            embedding.weight = nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device))
Patrick von Platen's avatar
Patrick von Platen committed
255
256
257
258
259
260
261
262
            embedding.weight.requires_grad = False

        half_seq_len = self.seq_length // 2
        roll = self.chunk_length

        half_input_ids = input_ids[:, :half_seq_len]

        # normal padded
Lysandre's avatar
Lysandre committed
263
264
265
266
        attn_mask = torch.cat(
            [torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)],
            dim=-1,
        )
Patrick von Platen's avatar
Patrick von Platen committed
267
        input_ids_padded = torch.cat(
Lysandre's avatar
Lysandre committed
268
269
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
            dim=-1,
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
273
        )

        # shifted padded
        input_ids_roll = torch.cat(
Lysandre's avatar
Lysandre committed
274
275
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
            dim=-1,
Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
279
280
281
282
283
284
        )
        input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1)
        attn_mask_roll = torch.roll(attn_mask, roll, dims=-1)

        output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len]
        output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll]

        self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3))

285
286
287
    def create_and_check_reformer_layer_dropout_seed(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
        config.is_decoder = is_decoder
        layer = ReformerLayer(config).to(torch_device)
        layer.train()
        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        # get random tensors
        hidden_states = floats_tensor(shape)
        prev_attn_output = floats_tensor(shape)

        # now the random seeds for attention and feed forward is initialized
        # forward tensors with dropout
        layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask)

        next_attn_output = layer_outputs.attn_output
        next_hidden_states = layer_outputs.hidden_states

        torch.manual_seed(layer.attention_seed)
        attn_outputs = layer.attention(hidden_states, attention_mask=input_mask)
        self.parent.assertTrue(
Lysandre's avatar
Lysandre committed
311
312
313
314
315
            torch.allclose(
                prev_attn_output + attn_outputs.hidden_states,
                next_attn_output,
                atol=1e-3,
            )
Patrick von Platen's avatar
Patrick von Platen committed
316
317
318
319
320
        )

        torch.manual_seed(layer.feed_forward_seed)
        feed_forward_hidden_states = layer.feed_forward(next_attn_output)
        self.parent.assertTrue(
Lysandre's avatar
Lysandre committed
321
322
323
324
325
            torch.allclose(
                next_hidden_states,
                hidden_states + feed_forward_hidden_states,
                atol=1e-3,
            )
Patrick von Platen's avatar
Patrick von Platen committed
326
327
        )

328
    def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
329
330
331
332
333
334
335
        if not self.is_training:
            return

        # disable dropout
        config.hidden_dropout_prob = 0
        config.local_attention_probs_dropout_prob = 0
        config.lsh_attention_probs_dropout_prob = 0
336
337
        config.lsh_num_chunks_after = 1
        config.is_decoder = False
Patrick von Platen's avatar
Patrick von Platen committed
338
339

        torch.manual_seed(0)
340
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
345
346
347
348
349
350
351
352
353
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_no_chunk.backward()
        grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]

        config.chunk_size_lm_head = 1
        config.chunk_size_feed_forward = 1

        torch.manual_seed(0)
354
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_chunk.backward()
        grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3))
        self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3))
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3)
        )
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3)
        )

372
    def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        layer = ReformerLayer(config).to(torch_device)
        layer.train()

        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        hidden_states = floats_tensor(shape)
        attn_output = floats_tensor(shape)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.attention_seed)
            seeds.append(layer.attention_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.feed_forward_seed)
            seeds.append(layer.feed_forward_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

403
    def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
404
405
406
407
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
Patrick von Platen's avatar
Patrick von Platen committed
408
        output = model(input_ids, attention_mask=input_mask)["last_hidden_state"]
Patrick von Platen's avatar
Patrick von Platen committed
409
410
        self.parent.assertFalse(torch.isnan(output).any().item())

411
412
413
414
415
416
417
418
419
420
421
422
423
    def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = True
        config.lsh_num_chunks_after = 0
        config.bos_token_id = 0
        config.eos_token_id = None
        config.max_length = 20

        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        output = model.generate()
        self.parent.assertIsNotNone(output)

424
    def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels):
425
426
        config.is_decoder = True
        config.lsh_num_chunks_after = 0
Patrick von Platen's avatar
Patrick von Platen committed
427
428
429
430
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
431
432
        # only use last 10 inputs for generation
        output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
433
434
        self.parent.assertFalse(torch.isnan(output).any().item())

435
    def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels):
436
437
438
        # force chunk length to be bigger than input_ids
        config.lsh_attn_chunk_length = 2 * input_ids.shape[-1]
        config.local_attn_chunk_length = 2 * input_ids.shape[-1]
439
440
441
        config.lsh_num_chunks_after = 1
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
442
443
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
444
        output_logits = model(input_ids, attention_mask=input_mask)["logits"]
445
446
        self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1])

447
    def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels):
448
449
450
        model = ReformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
451
        result = model(
Lysandre's avatar
Lysandre committed
452
453
454
455
            input_ids,
            attention_mask=input_mask,
            start_positions=choice_labels,
            end_positions=choice_labels,
456
        )
Stas Bekman's avatar
Stas Bekman committed
457
458
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
459

460
461
462
463
464
465
466
467
468
469
470
    def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = True
        config.lsh_num_chunks_before = 1
        config.lsh_num_chunks_after = 0
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        input_ids_first = input_ids[:, :-1]
        input_ids_second = input_ids[:, -1:]

        # return saved cache
Sylvain Gugger's avatar
Sylvain Gugger committed
471
        past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"]
472
473

        # calculate last output with and without cache
Sylvain Gugger's avatar
Sylvain Gugger committed
474
475
        outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"]
        outputs_without_cache = model(input_ids)["logits"][:, -1]
476
477
478
479
480
481
482
483
484
485
486

        # select random slice idx
        random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item()

        # outputs should be similar within range
        self.parent.assertTrue(
            torch.allclose(
                outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2
            )
        )

Patrick von Platen's avatar
Patrick von Platen committed
487
488
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
489
        (config, input_ids, input_mask, choice_labels) = config_and_inputs
Patrick von Platen's avatar
Patrick von Platen committed
490
491
492
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict

493
494
495
496
497
498
499
500
    def create_and_check_reformer_for_sequence_classification(
        self, config, input_ids, input_mask, choice_labels, is_decoder
    ):
        config.is_decoder = is_decoder
        sequence_labels = ids_tensor([self.batch_size], config.num_labels)
        model = ReformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
501
        result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
502
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
503

Patrick von Platen's avatar
Patrick von Platen committed
504
505
506

class ReformerTesterMixin:
    """
Lysandre's avatar
Lysandre committed
507
    Reformer Local and Reformer LSH run essentially the same tests
Patrick von Platen's avatar
Patrick von Platen committed
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    """

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_reformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model(*config_and_inputs)

    def test_reformer_lm_model_backward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs)

    def test_reformer_model_attn_masking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
523
524
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
525
526
527
528
529

    def test_reformer_with_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs)

530
531
532
533
    def test_reformer_with_mlm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
534
535
    def test_reformer_layer_training_dropout(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
536
537
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
541
542

    def test_reformer_chunking_backward_equality(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs)

543
544
545
546
    def test_reformer_no_chunking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs)

547
548
549
550
551
552
553
554
555
556
557
558
    def test_reformer_qa_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs)

    def test_reformer_cached_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_past_buckets_states(*config_and_inputs)

    def test_reformer_cached_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    @slow
    def test_dropout_random_seed_is_changing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs)

574
575
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
576
577
578
        # Opt-out of this test.
        pass

579
580
581
582
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False)

583
584
585
586
    def test_retain_grad_hidden_states_attentions(self):
        # reformer cannot keep gradients in attentions or hidden states
        return

587
588
589
590
    def test_resize_embeddings_untied(self):
        # reformer cannot resize embeddings that easily
        return

Patrick von Platen's avatar
Patrick von Platen committed
591
592

@require_torch
593
class ReformerLocalAttnModelTest(ReformerTesterMixin, GenerationTesterMixin, ModelTesterMixin, unittest.TestCase):
594
    all_model_classes = (
595
596
597
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
598
    )
Patrick von Platen's avatar
Patrick von Platen committed
599
600
601
602
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False
603
    test_sequence_classification_problem_types = True
Patrick von Platen's avatar
Patrick von Platen committed
604
605

    def setUp(self):
606
        self.model_tester = ReformerModelTester(self)
Patrick von Platen's avatar
Patrick von Platen committed
607
608
609
610
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)

    @slow
    def test_model_from_pretrained(self):
611
        for model_name in REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Patrick von Platen's avatar
Patrick von Platen committed
612
613
614
            model = ReformerModelWithLMHead.from_pretrained(model_name)
            self.assertIsNotNone(model)

615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            num_chunks = tgt_len // config.local_attn_chunk_length + (tgt_len % config.local_attn_chunk_length != 0)
            tgt_chunk_len = config.local_attn_chunk_length
            src_chunk_len = config.local_attn_chunk_length * (
                1 + config.local_num_chunks_after + config.local_num_chunks_before
            )

            if use_cache:
                expected_shape = (
                    batch_size * num_beam_groups,
                    config.num_attention_heads,
                    tgt_len,
                    min_length // config.local_attn_chunk_length + 1 + idx,
                )
            else:
                expected_shape = (
                    batch_size * num_beam_groups,
                    config.num_attention_heads,
                    num_chunks,
                    tgt_chunk_len,
                    src_chunk_len,
                )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx
            seq_len = config.local_attn_chunk_length * (
                seq_len // config.local_attn_chunk_length + (seq_len % config.local_attn_chunk_length != 0)
            )

            if use_cache:
                seq_len = 1

            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )

Patrick von Platen's avatar
Patrick von Platen committed
678
679

@require_torch
680
class ReformerLSHAttnModelTest(ReformerTesterMixin, ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
681
    all_model_classes = (
682
683
684
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
685
    )
Patrick von Platen's avatar
Patrick von Platen committed
686
687
688
689
690
691
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def setUp(self):
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
        self.model_tester = ReformerModelTester(
            self,
            batch_size=13,
            seq_length=13,
            use_input_mask=True,
            use_labels=True,
            is_training=False,
            is_decoder=True,
            vocab_size=32,
            attention_head_size=16,
            hidden_size=64,
            num_attention_heads=2,
            num_buckets=2,
            num_hashes=4,
            lsh_attn_chunk_length=4,
            lsh_num_chunks_before=1,
            lsh_num_chunks_after=0,
            chunk_size_lm_head=5,
            chunk_size_feed_forward=6,
            feed_forward_size=32,
            hidden_act="relu",
            hidden_dropout_prob=0.1,
            lsh_attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            initializer_range=0.02,
            axial_norm_std=1.0,
            layer_norm_eps=1e-12,
            axial_pos_embds=True,
            axial_pos_shape=[4, 8],
            axial_pos_embds_dim=[16, 48],
            # sanotheu
            # attn_layers=[lsh,lsh,lsh,lsh],
            attn_layers=["lsh"],
            pad_token_id=0,
            eos_token_id=2,
            scope=None,
            hash_seed=0,
            num_labels=2,
        )
Patrick von Platen's avatar
Patrick von Platen committed
731
732
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)

733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, list) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            num_chunks = tgt_len // config.lsh_attn_chunk_length + (tgt_len % config.lsh_attn_chunk_length != 0)
            tgt_chunk_len = config.lsh_attn_chunk_length
            src_chunk_len = config.lsh_attn_chunk_length * (
                1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before
            )

            if use_cache:
                expected_shape = (
                    batch_size * num_beam_groups,
                    config.num_attention_heads,
                    config.num_hashes,
                    tgt_len,
                    config.num_hashes * (1 + config.lsh_num_chunks_after + config.lsh_num_chunks_before),
                )
            else:
                expected_shape = (
                    batch_size * num_beam_groups,
                    config.num_attention_heads,
                    num_chunks * config.num_hashes,
                    tgt_chunk_len,
                    src_chunk_len,
                )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, list) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            seq_len = config.lsh_attn_chunk_length * (
                seq_len // config.lsh_attn_chunk_length + (seq_len % config.lsh_attn_chunk_length != 0)
            )

            if use_cache:
                seq_len = 1

            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )

Patrick von Platen's avatar
Patrick von Platen committed
797
798

@require_torch
799
800
@require_sentencepiece
@require_tokenizers
Patrick von Platen's avatar
Patrick von Platen committed
801
802
class ReformerIntegrationTests(unittest.TestCase):
    """
803
    These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "lsh" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`.
Patrick von Platen's avatar
Patrick von Platen committed
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    """

    def _get_basic_config_and_input(self):
        config = {
            "vocab_size": 320,
            "attention_head_size": 8,
            "hidden_size": 16,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
            "local_attn_chunk_length": 4,
            "lsh_num_chunks_before": 1,
            "lsh_num_chunks_after": 0,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.0,
            "lsh_attention_probs_dropout_prob": 0.0,
            "local_attention_probs_dropout_prob": 0.0,
            "max_position_embeddings": 32,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "sinusoidal_pos_embds": False,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [8, 8],
            "hash_seed": 0,
            "is_decoder": True,
        }
        return config

    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        1.90826353e00,
                        -1.45999730e00,
                        -6.20405462e-01,
                        1.52503433e00,
                        -3.64464232e-01,
                        -8.27359235e-01,
                        8.39670803e-01,
                        2.44492178e-01,
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -2.66374286e-02,
                        4.33497576e-01,
                        3.10386309e-01,
                        5.46039944e-01,
                        -2.47292666e-04,
                        -7.52305019e-01,
                        2.39162103e-01,
                        7.25216186e-01,
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        1.85247482e-01,
                        7.07046037e-01,
                        -6.77089715e-01,
                        -2.24209655e00,
                        -3.75307980e-02,
                        -8.59380874e-01,
                        -2.81027884e00,
                        1.01276376e00,
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        9.46069193e-01,
                        1.53417623e-01,
                        -9.58686996e-01,
                        1.18126669e-01,
                        1.75967724e00,
                        1.62194590e00,
                        -5.74108159e-01,
                        6.79920443e-01,
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def _get_attn_mask(self):
        return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device)

    def _get_input_ids_and_mask(self):
        mask = torch.tensor(
            [
                [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],
                [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        input_ids = torch.tensor(
            [
                [
                    89,
                    279,
                    286,
                    84,
                    194,
                    316,
                    182,
                    28,
                    283,
                    37,
                    169,
                    7,
                    253,
                    267,
                    107,
                    250,
                    44,
                    7,
                    102,
                    62,
                    3,
                    243,
                    171,
                    265,
                    302,
                    48,
                    164,
                    264,
                    148,
                    229,
                    280,
                    150,
                ],
                [
                    9,
                    192,
                    66,
                    112,
                    163,
                    83,
                    135,
                    70,
                    224,
                    96,
                    31,
                    80,
                    196,
                    80,
                    63,
                    22,
                    85,
                    100,
                    47,
                    283,
                    0,
                    163,
                    126,
                    143,
                    195,
                    82,
                    53,
                    82,
                    18,
                    27,
                    182,
                    52,
                ],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        return input_ids, mask

    def test_lsh_layer_forward(self):
        config = self._get_basic_config_and_input()
1014
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
        config["attn_layers"] = ["lsh"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1024
1025
1026
            [1.6879, -1.3083, -0.4708, 1.3555, -0.6292],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1027
1028
1029
1030
1031
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
1032
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
1033
1034
1035
1036
1037
1038
1039
1040
        config["attn_layers"] = ["lsh"]
        config["num_buckets"] = [2, 4]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(
Lysandre's avatar
Lysandre committed
1041
1042
1043
            prev_attn_output=hidden_states.clone(),
            hidden_states=hidden_states,
            attention_mask=attn_mask,
Patrick von Platen's avatar
Patrick von Platen committed
1044
1045
1046
        )
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1047
1048
1049
            [1.6439, -1.2306, -0.5108, 1.3006, -0.6537],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1050
1051
1052
1053
1054
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward(self):
        config = self._get_basic_config_and_input()
1055
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
        config["attn_layers"] = ["local"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1065
1066
1067
            [1.4212, -2.0576, -0.9688, 1.4599, -0.1344],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1068
1069
1070
1071
1072
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
1073
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
1074
1075
1076
1077
1078
1079
        config["attn_layers"] = ["local"]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
Lysandre's avatar
Lysandre committed
1080
1081
1082
1083
1084
        reformer_output = layer(
            prev_attn_output=hidden_states,
            hidden_states=hidden_states,
            attention_mask=attn_mask,
        )
Patrick von Platen's avatar
Patrick von Platen committed
1085
1086
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1087
1088
1089
            [1.4750, -2.0235, -0.9743, 1.4463, -0.1269],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["num_buckets"] = [2, 4]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1104
1105
1106
            [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1120
1121
1122
            [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lm_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"]
        config["num_buckets"] = [2, 4]
        config["is_decoder"] = False
        torch.manual_seed(0)
1132
        model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1133
1134
1135
1136
1137
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[1, -1, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1138
1139
1140
            [0.0256, -0.0121, 0.0636, 0.0024, -0.0393],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        config["hidden_dropout_prob"] = 0.0
        config["local_attention_probs_dropout_prob"] = 0.0
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7786, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()

        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
Lysandre's avatar
Lysandre committed
1162
1163
1164
            [-0.0005, 0.0001, 0.0002, 0.0003, 0.0006],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1165
1166
1167
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
Lysandre's avatar
Lysandre committed
1168
1169
1170
            [0.0037, -1.3793, -1.0231, -1.5230, -2.5306],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1171
1172
1173
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
Lysandre's avatar
Lysandre committed
1174
1175
1176
            [-1.3165, 0.5168, 0.7785, 1.0811, -0.9830],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    def test_lsh_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["hidden_dropout_prob"] = 0.0
        config["lsh_attention_probs_dropout_prob"] = 0.0
        config["num_buckets"] = [2, 4]
        config["num_hashes"] = 6
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7819, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()
        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
Lysandre's avatar
Lysandre committed
1201
1202
1203
            [2.6357e-05, 4.3358e-04, -8.4985e-04, 1.0094e-04, 3.8954e-04],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1204
1205
1206
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
Lysandre's avatar
Lysandre committed
1207
1208
1209
            [-0.0984, 0.6283, 0.4282, 1.2960, 0.6897],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1210
1211
1212
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
Lysandre's avatar
Lysandre committed
1213
1214
1215
            [0.4626, -0.0231, -0.0172, 0.1081, 0.3805],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    @slow
    def test_pretrained_generate_crime_and_punish(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()

        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids = model.generate(
            input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8
        )
1231
1232
        output = tokenizer.decode(output_ids[0])

Patrick von Platen's avatar
Patrick von Platen committed
1233
        self.assertEqual(
1234
            output,
Patrick von Platen's avatar
Patrick von Platen committed
1235
1236
            "A few months later state expression in his ideas, at the first entrance. He was positively for an inst",
        )
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

    @slow
    def test_pretrained_generate_use_cache_equality(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()
        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids_with_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=False)
        output_ids_without_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=True)

        output_with_cache = tokenizer.decode(output_ids_with_cache[0])
        output_without_cache = tokenizer.decode(output_ids_without_cache[0])

        self.assertEqual(output_with_cache, output_without_cache)