test_modeling_reformer.py 43.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8 # Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
19
from transformers.testing_utils import require_multigpu, require_torch, slow, torch_device
Patrick von Platen's avatar
Patrick von Platen committed
20
21
22
23
24
25
26
27

from .test_configuration_common import ConfigTester
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor


if is_torch_available():
    from transformers import (
        ReformerConfig,
28
        ReformerForMaskedLM,
Patrick von Platen's avatar
Patrick von Platen committed
29
30
        ReformerModel,
        ReformerModelWithLMHead,
31
        ReformerForSequenceClassification,
Patrick von Platen's avatar
Patrick von Platen committed
32
33
        ReformerTokenizer,
        ReformerLayer,
34
        ReformerForQuestionAnswering,
35
        REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
48
    )
    import torch


class ReformerModelTester:
    def __init__(
        self,
        parent,
        batch_size=None,
        seq_length=None,
        is_training=None,
        is_decoder=None,
        use_input_mask=None,
49
        use_labels=None,
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        vocab_size=None,
        attention_head_size=None,
        hidden_size=None,
        num_attention_heads=None,
        local_attn_chunk_length=None,
        local_num_chunks_before=None,
        local_num_chunks_after=None,
        num_buckets=None,
        num_hashes=1,
        lsh_attn_chunk_length=None,
        lsh_num_chunks_before=None,
        lsh_num_chunks_after=None,
        chunk_size_lm_head=None,
        chunk_size_feed_forward=None,
        feed_forward_size=None,
        hidden_act=None,
        hidden_dropout_prob=None,
        local_attention_probs_dropout_prob=None,
        lsh_attention_probs_dropout_prob=None,
        max_position_embeddings=None,
        initializer_range=None,
        axial_norm_std=None,
        layer_norm_eps=None,
        axial_pos_embds=None,
        axial_pos_shape=None,
        axial_pos_embds_dim=None,
        attn_layers=None,
        pad_token_id=None,
        eos_token_id=None,
        scope=None,
        hash_seed=None,
81
        num_labels=None,
Patrick von Platen's avatar
Patrick von Platen committed
82
83
84
85
86
87
88
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.is_decoder = is_decoder
        self.use_input_mask = use_input_mask
89
        self.use_labels = use_labels
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        self.vocab_size = vocab_size
        self.attention_head_size = attention_head_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = len(attn_layers)
        self.local_attn_chunk_length = local_attn_chunk_length
        self.local_num_chunks_after = local_num_chunks_after
        self.local_num_chunks_before = local_num_chunks_before
        self.num_hashes = num_hashes
        self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
        self.lsh_attn_chunk_length = lsh_attn_chunk_length
        self.lsh_num_chunks_after = lsh_num_chunks_after
        self.lsh_num_chunks_before = lsh_num_chunks_before
        self.hidden_act = hidden_act
        self.feed_forward_size = feed_forward_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
        self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.axial_pos_embds = axial_pos_embds
        self.axial_pos_shape = tuple(axial_pos_shape)
        self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
        self.axial_norm_std = axial_norm_std
        self.chunk_size_lm_head = chunk_size_lm_head
        self.chunk_size_feed_forward = chunk_size_feed_forward
        self.scope = scope
        self.attn_layers = attn_layers
        self.pad_token_id = pad_token_id
        self.hash_seed = hash_seed

        attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length
        num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after
        num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before

        self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0)
        self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length
        self.chunk_length = attn_chunk_length
129
        self.num_labels = num_labels
Patrick von Platen's avatar
Patrick von Platen committed
130
131
132
133
134
135
136
137

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

138
139
140
141
        choice_labels = None
        if self.use_labels:
            choice_labels = ids_tensor([self.batch_size], 2)

Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        config = ReformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            feed_forward_size=self.feed_forward_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob,
            lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            is_decoder=self.is_decoder,
            axial_pos_embds=self.axial_pos_embds,
            axial_pos_shape=self.axial_pos_shape,
            axial_pos_embds_dim=self.axial_pos_embds_dim,
            local_attn_chunk_length=self.local_attn_chunk_length,
            local_num_chunks_after=self.local_num_chunks_after,
            local_num_chunks_before=self.local_num_chunks_before,
            num_hashes=self.num_hashes,
            num_buckets=self.num_buckets,
            lsh_attn_chunk_length=self.lsh_attn_chunk_length,
            lsh_num_chunks_after=self.lsh_num_chunks_after,
            lsh_num_chunks_before=self.lsh_num_chunks_before,
            attn_layers=self.attn_layers,
            pad_token_id=self.pad_token_id,
            hash_seed=self.hash_seed,
        )

        return (
            config,
            input_ids,
            input_mask,
174
            choice_labels,
Patrick von Platen's avatar
Patrick von Platen committed
175
176
177
178
179
        )

    def check_loss_output(self, result):
        self.parent.assertListEqual(list(result["loss"].size()), [])

180
    def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
        (sequence_output,) = model(input_ids, attention_mask=input_mask)
        (sequence_output,) = model(input_ids)

        result = {
            "sequence_output": sequence_output,
        }
        # 2 * hidden_size because we use reversible resnet layers
        self.parent.assertListEqual(
            list(result["sequence_output"].size()), [self.batch_size, self.seq_length, 2 * self.hidden_size],
        )

195
    def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
196
197
198
199
200
201
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        loss = model(input_ids, attention_mask=input_mask, labels=input_ids)[0]
        loss.backward()

202
    def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
203
204
205
206
207
208
209
210
211
212
213
214
215
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(input_ids, attention_mask=input_mask, labels=input_ids)
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size],
        )
        self.check_loss_output(result)

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
        loss, prediction_scores = model(input_ids, attention_mask=input_mask, labels=input_ids)
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            list(result["prediction_scores"].size()), [self.batch_size, self.seq_length, self.vocab_size],
        )
        self.check_loss_output(result)

    def create_and_check_reformer_model_with_attn_mask(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        # no special position embeddings
        config.axial_pos_embds = False
        config.is_decoder = is_decoder

        if self.lsh_attn_chunk_length is not None:
            # need to set chunk length equal sequence length to be certain that chunking works
            config.lsh_attn_chunk_length = self.seq_length

        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
        # set all position encodings to zero so that postions don't matter
        with torch.no_grad():
            embedding = model.embeddings.position_embeddings.embedding
            embedding.weight = torch.nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device))
            embedding.weight.requires_grad = False

        half_seq_len = self.seq_length // 2
        roll = self.chunk_length

        half_input_ids = input_ids[:, :half_seq_len]

        # normal padded
        attn_mask = torch.cat([torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)], dim=-1,)
        input_ids_padded = torch.cat(
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1,
        )

        # shifted padded
        input_ids_roll = torch.cat(
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)], dim=-1,
        )
        input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1)
        attn_mask_roll = torch.roll(attn_mask, roll, dims=-1)

        output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len]
        output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll]

        self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3))

274
275
276
    def create_and_check_reformer_layer_dropout_seed(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        config.is_decoder = is_decoder
        layer = ReformerLayer(config).to(torch_device)
        layer.train()
        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        # get random tensors
        hidden_states = floats_tensor(shape)
        prev_attn_output = floats_tensor(shape)

        # now the random seeds for attention and feed forward is initialized
        # forward tensors with dropout
        layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask)

        next_attn_output = layer_outputs.attn_output
        next_hidden_states = layer_outputs.hidden_states

        torch.manual_seed(layer.attention_seed)
        attn_outputs = layer.attention(hidden_states, attention_mask=input_mask)
        self.parent.assertTrue(
            torch.allclose(prev_attn_output + attn_outputs.hidden_states, next_attn_output, atol=1e-3,)
        )

        torch.manual_seed(layer.feed_forward_seed)
        feed_forward_hidden_states = layer.feed_forward(next_attn_output)
        self.parent.assertTrue(
            torch.allclose(next_hidden_states, hidden_states + feed_forward_hidden_states, atol=1e-3,)
        )

309
    def create_and_check_reformer_feed_forward_chunking(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        torch.manual_seed(0)
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
        hidden_states_no_chunk = model(input_ids, attention_mask=input_mask)[0]

        config.chunk_size_lm_head = 1
        config.chunk_size_feed_forward = 1

        torch.manual_seed(0)
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()

        hidden_states_with_chunk = model(input_ids, attention_mask=input_mask)[0]
        self.parent.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

327
    def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        if not self.is_training:
            return

        # disable dropout
        config.hidden_dropout_prob = 0
        config.local_attention_probs_dropout_prob = 0
        config.lsh_attention_probs_dropout_prob = 0

        torch.manual_seed(0)
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_no_chunk.backward()
        grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]

        config.chunk_size_lm_head = 1
        config.chunk_size_feed_forward = 1

        torch.manual_seed(0)
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_chunk.backward()
        grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3))
        self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3))
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3)
        )
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3)
        )

369
    def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        layer = ReformerLayer(config).to(torch_device)
        layer.train()

        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        hidden_states = floats_tensor(shape)
        attn_output = floats_tensor(shape)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.attention_seed)
            seeds.append(layer.attention_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.feed_forward_seed)
            seeds.append(layer.feed_forward_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

400
    def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
401
402
403
404
405
406
407
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
        output = model(input_ids, attention_mask=input_mask)[0]
        self.parent.assertFalse(torch.isnan(output).any().item())

408
    def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
409
410
411
412
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
413
414
        # only use last 10 inputs for generation
        output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
415
416
        self.parent.assertFalse(torch.isnan(output).any().item())

417
    def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels):
418
419
420
421
422
423
424
425
426
        # force chunk length to be bigger than input_ids
        config.lsh_attn_chunk_length = 2 * input_ids.shape[-1]
        config.local_attn_chunk_length = 2 * input_ids.shape[-1]
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        output_logits = model(input_ids, attention_mask=input_mask)[0]
        self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1])

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    def create_and_check_longformer_for_question_answering(self, config, input_ids, input_mask, choice_labels):
        model = ReformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
        loss, start_logits, end_logits = model(
            input_ids, attention_mask=input_mask, start_positions=choice_labels, end_positions=choice_labels,
        )
        result = {
            "loss": loss,
            "start_logits": start_logits,
            "end_logits": end_logits,
        }
        self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length])
        self.check_loss_output(result)

Patrick von Platen's avatar
Patrick von Platen committed
443
444
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
445
        (config, input_ids, input_mask, choice_labels) = config_and_inputs
Patrick von Platen's avatar
Patrick von Platen committed
446
447
448
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
    def create_and_check_reformer_for_sequence_classification(
        self, config, input_ids, input_mask, choice_labels, is_decoder
    ):
        config.is_decoder = is_decoder
        sequence_labels = ids_tensor([self.batch_size], config.num_labels)
        model = ReformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        loss, logits = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
        result = {
            "loss": loss,
            "logits": logits,
        }
        self.parent.assertListEqual(list(result["logits"].size()), [self.batch_size, self.num_labels])
        self.check_loss_output(result)

Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

class ReformerTesterMixin:
    """
        Reformer Local and Reformer LSH run essentially the same tests
    """

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_reformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model(*config_and_inputs)

    def test_reformer_lm_model_backward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs)

    def test_reformer_model_attn_masking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
484
485
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
486
487
488
489
490

    def test_reformer_with_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs)

491
492
493
494
    def test_reformer_with_mlm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
495
496
    def test_reformer_layer_training_dropout(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
497
498
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
499
500
501
502
503
504
505
506
507

    def test_reformer_chunking_forward_equality(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_feed_forward_chunking(*config_and_inputs)

    def test_reformer_chunking_backward_equality(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs)

508
509
510
511
    def test_reformer_no_chunking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    @slow
    def test_dropout_random_seed_is_changing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs)

527
528
529
530
531
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        # Opt-out of this test.
        pass

532
533
534
535
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False)

Patrick von Platen's avatar
Patrick von Platen committed
536
537

@require_torch
538
class ReformerLocalAttnModelTest(ReformerTesterMixin, ModelTesterMixin, unittest.TestCase):
539
    all_model_classes = (
540
541
542
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
543
    )
Patrick von Platen's avatar
Patrick von Platen committed
544
545
546
547
548
549
550
551
552
553
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def prepare_kwargs(self):
        return {
            "batch_size": 13,
            "seq_length": 32,
            "is_training": True,
554
            "is_decoder": True,
Patrick von Platen's avatar
Patrick von Platen committed
555
            "use_input_mask": True,
556
            "use_labels": True,
Patrick von Platen's avatar
Patrick von Platen committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
            "vocab_size": 32,
            "attention_head_size": 16,
            "hidden_size": 32,
            "num_attention_heads": 2,
            "local_attn_chunk_length": 4,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "local_attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [16, 16],
            "attn_layers": ["local", "local", "local", "local"],
            "pad_token_id": 0,
            "eos_token_id": 2,
            "scope": None,
            "hash_seed": 0,
582
            "num_labels": 2,
Patrick von Platen's avatar
Patrick von Platen committed
583
584
585
586
587
588
589
590
591
        }

    def setUp(self):
        tester_kwargs = self.prepare_kwargs()
        self.model_tester = ReformerModelTester(self, **tester_kwargs)
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)

    @slow
    def test_model_from_pretrained(self):
592
        for model_name in REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Patrick von Platen's avatar
Patrick von Platen committed
593
594
595
596
597
            model = ReformerModelWithLMHead.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
598
class ReformerLSHAttnModelTest(ReformerTesterMixin, ModelTesterMixin, unittest.TestCase):
599
    all_model_classes = (
600
601
602
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
603
    )
Patrick von Platen's avatar
Patrick von Platen committed
604
605
606
607
608
609
610
611
612
613
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def prepare_kwargs(self):
        return {
            "batch_size": 13,
            "seq_length": 13,
            "use_input_mask": True,
614
            "use_labels": True,
Patrick von Platen's avatar
Patrick von Platen committed
615
            "is_training": False,
616
            "is_decoder": True,
Patrick von Platen's avatar
Patrick von Platen committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
            "vocab_size": 32,
            "attention_head_size": 16,
            "hidden_size": 64,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
            "lsh_num_chunks_before": 2,
            "lsh_num_chunks_after": 3,
            "chunk_size_lm_head": 5,
            "chunk_size_feed_forward": 6,
            "feed_forward_size": 32,
            "hidden_act": "relu",
            "hidden_dropout_prob": 0.1,
            "lsh_attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [16, 48],
            "attn_layers": ["lsh", "lsh", "lsh", "lsh"],
            "pad_token_id": 0,
            "eos_token_id": 2,
            "scope": None,
            "hash_seed": 0,
644
            "num_labels": 2,
Patrick von Platen's avatar
Patrick von Platen committed
645
646
647
648
649
650
651
652
653
654
655
        }

    def setUp(self):
        tester_kwargs = self.prepare_kwargs()
        self.model_tester = ReformerModelTester(self, **tester_kwargs)
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)


@require_torch
class ReformerIntegrationTests(unittest.TestCase):
    """
656
    These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "local" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`.
Patrick von Platen's avatar
Patrick von Platen committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
    """

    def _get_basic_config_and_input(self):
        config = {
            "vocab_size": 320,
            "attention_head_size": 8,
            "hidden_size": 16,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
            "local_attn_chunk_length": 4,
            "lsh_num_chunks_before": 1,
            "lsh_num_chunks_after": 0,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.0,
            "lsh_attention_probs_dropout_prob": 0.0,
            "local_attention_probs_dropout_prob": 0.0,
            "max_position_embeddings": 32,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "sinusoidal_pos_embds": False,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [8, 8],
            "hash_seed": 0,
            "is_decoder": True,
        }
        return config

    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        1.90826353e00,
                        -1.45999730e00,
                        -6.20405462e-01,
                        1.52503433e00,
                        -3.64464232e-01,
                        -8.27359235e-01,
                        8.39670803e-01,
                        2.44492178e-01,
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -2.66374286e-02,
                        4.33497576e-01,
                        3.10386309e-01,
                        5.46039944e-01,
                        -2.47292666e-04,
                        -7.52305019e-01,
                        2.39162103e-01,
                        7.25216186e-01,
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        1.85247482e-01,
                        7.07046037e-01,
                        -6.77089715e-01,
                        -2.24209655e00,
                        -3.75307980e-02,
                        -8.59380874e-01,
                        -2.81027884e00,
                        1.01276376e00,
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        9.46069193e-01,
                        1.53417623e-01,
                        -9.58686996e-01,
                        1.18126669e-01,
                        1.75967724e00,
                        1.62194590e00,
                        -5.74108159e-01,
                        6.79920443e-01,
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def _get_attn_mask(self):
        return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device)

    def _get_input_ids_and_mask(self):
        mask = torch.tensor(
            [
                [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],
                [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        input_ids = torch.tensor(
            [
                [
                    89,
                    279,
                    286,
                    84,
                    194,
                    316,
                    182,
                    28,
                    283,
                    37,
                    169,
                    7,
                    253,
                    267,
                    107,
                    250,
                    44,
                    7,
                    102,
                    62,
                    3,
                    243,
                    171,
                    265,
                    302,
                    48,
                    164,
                    264,
                    148,
                    229,
                    280,
                    150,
                ],
                [
                    9,
                    192,
                    66,
                    112,
                    163,
                    83,
                    135,
                    70,
                    224,
                    96,
                    31,
                    80,
                    196,
                    80,
                    63,
                    22,
                    85,
                    100,
                    47,
                    283,
                    0,
                    163,
                    126,
                    143,
                    195,
                    82,
                    53,
                    82,
                    18,
                    27,
                    182,
                    52,
                ],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        return input_ids, mask

    def test_lsh_layer_forward(self):
        config = self._get_basic_config_and_input()
867
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
        config["attn_layers"] = ["lsh"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
            [1.6879, -1.3083, -0.4708, 1.3555, -0.6292], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
883
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
        config["attn_layers"] = ["lsh"]
        config["num_buckets"] = [2, 4]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(
            prev_attn_output=hidden_states.clone(), hidden_states=hidden_states, attention_mask=attn_mask,
        )
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
            [1.6439, -1.2306, -0.5108, 1.3006, -0.6537], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward(self):
        config = self._get_basic_config_and_input()
902
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        config["attn_layers"] = ["local"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
            [1.4212, -2.0576, -0.9688, 1.4599, -0.1344], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
918
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
919
920
921
922
923
924
925
926
927
        config["attn_layers"] = ["local"]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states, attention_mask=attn_mask,)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
928
            [1.4750, -2.0235, -0.9743, 1.4463, -0.1269], dtype=torch.float, device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["num_buckets"] = [2, 4]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
            [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
            [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lm_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"]
        config["num_buckets"] = [2, 4]
        config["is_decoder"] = False
        torch.manual_seed(0)
967
        model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
968
969
970
971
972
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[1, -1, :5]
        expected_output_slice = torch.tensor(
973
            [0.0256, -0.0121, 0.0636, 0.0024, -0.0393], dtype=torch.float, device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        config["hidden_dropout_prob"] = 0.0
        config["local_attention_probs_dropout_prob"] = 0.0
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7786, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()

        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
            [-0.0005, 0.0001, 0.0002, 0.0003, 0.0006], dtype=torch.float, device=torch_device,
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
            [0.0037, -1.3793, -1.0231, -1.5230, -2.5306], dtype=torch.float, device=torch_device,
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
            [-1.3165, 0.5168, 0.7785, 1.0811, -0.9830], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    def test_lsh_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["hidden_dropout_prob"] = 0.0
        config["lsh_attention_probs_dropout_prob"] = 0.0
        config["num_buckets"] = [2, 4]
        config["num_hashes"] = 6
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7819, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()
        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
            [2.6357e-05, 4.3358e-04, -8.4985e-04, 1.0094e-04, 3.8954e-04], dtype=torch.float, device=torch_device,
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
            [-0.0984, 0.6283, 0.4282, 1.2960, 0.6897], dtype=torch.float, device=torch_device,
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
            [0.4626, -0.0231, -0.0172, 0.1081, 0.3805], dtype=torch.float, device=torch_device,
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    @slow
    def test_pretrained_generate_crime_and_punish(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()

        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids = model.generate(
            input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8
        )
        output_text = tokenizer.decode(output_ids[0])
        self.assertEqual(
            output_text,
            "A few months later state expression in his ideas, at the first entrance. He was positively for an inst",
        )