"sgl-router/vscode:/vscode.git/clone" did not exist on "8ada1ab6c791c82cf6b476a24818221121b3d799"
test_modeling_reformer.py 45.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8 # Copyright 2020 Huggingface
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
19
from transformers.testing_utils import require_multigpu, require_torch, slow, torch_device
Patrick von Platen's avatar
Patrick von Platen committed
20
21

from .test_configuration_common import ConfigTester
22
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25


if is_torch_available():
26
27
    import torch

Patrick von Platen's avatar
Patrick von Platen committed
28
    from transformers import (
29
        REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
Patrick von Platen's avatar
Patrick von Platen committed
30
        ReformerConfig,
31
        ReformerForMaskedLM,
32
33
34
        ReformerForQuestionAnswering,
        ReformerForSequenceClassification,
        ReformerLayer,
Patrick von Platen's avatar
Patrick von Platen committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
        ReformerModel,
        ReformerModelWithLMHead,
        ReformerTokenizer,
    )


class ReformerModelTester:
    def __init__(
        self,
        parent,
        batch_size=None,
        seq_length=None,
        is_training=None,
        is_decoder=None,
        use_input_mask=None,
50
        use_labels=None,
Patrick von Platen's avatar
Patrick von Platen committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        vocab_size=None,
        attention_head_size=None,
        hidden_size=None,
        num_attention_heads=None,
        local_attn_chunk_length=None,
        local_num_chunks_before=None,
        local_num_chunks_after=None,
        num_buckets=None,
        num_hashes=1,
        lsh_attn_chunk_length=None,
        lsh_num_chunks_before=None,
        lsh_num_chunks_after=None,
        chunk_size_lm_head=None,
        chunk_size_feed_forward=None,
        feed_forward_size=None,
        hidden_act=None,
        hidden_dropout_prob=None,
        local_attention_probs_dropout_prob=None,
        lsh_attention_probs_dropout_prob=None,
        max_position_embeddings=None,
        initializer_range=None,
        axial_norm_std=None,
        layer_norm_eps=None,
        axial_pos_embds=None,
        axial_pos_shape=None,
        axial_pos_embds_dim=None,
        attn_layers=None,
        pad_token_id=None,
        eos_token_id=None,
        scope=None,
        hash_seed=None,
82
        num_labels=None,
Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88
89
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.is_decoder = is_decoder
        self.use_input_mask = use_input_mask
90
        self.use_labels = use_labels
Patrick von Platen's avatar
Patrick von Platen committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        self.vocab_size = vocab_size
        self.attention_head_size = attention_head_size
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_hidden_layers = len(attn_layers)
        self.local_attn_chunk_length = local_attn_chunk_length
        self.local_num_chunks_after = local_num_chunks_after
        self.local_num_chunks_before = local_num_chunks_before
        self.num_hashes = num_hashes
        self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets
        self.lsh_attn_chunk_length = lsh_attn_chunk_length
        self.lsh_num_chunks_after = lsh_num_chunks_after
        self.lsh_num_chunks_before = lsh_num_chunks_before
        self.hidden_act = hidden_act
        self.feed_forward_size = feed_forward_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob
        self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.axial_pos_embds = axial_pos_embds
        self.axial_pos_shape = tuple(axial_pos_shape)
        self.axial_pos_embds_dim = tuple(axial_pos_embds_dim)
        self.axial_norm_std = axial_norm_std
        self.chunk_size_lm_head = chunk_size_lm_head
        self.chunk_size_feed_forward = chunk_size_feed_forward
        self.scope = scope
        self.attn_layers = attn_layers
        self.pad_token_id = pad_token_id
        self.hash_seed = hash_seed

        attn_chunk_length = local_attn_chunk_length if local_attn_chunk_length is not None else lsh_attn_chunk_length
        num_chunks_after = local_num_chunks_after if local_num_chunks_after is not None else lsh_num_chunks_after
        num_chunks_before = local_num_chunks_before if local_num_chunks_before is not None else lsh_num_chunks_before

        self.encoder_seq_length = seq_length // attn_chunk_length + (self.seq_length % attn_chunk_length != 0)
        self.key_length = (num_chunks_before + num_chunks_after + 1) * attn_chunk_length
        self.chunk_length = attn_chunk_length
130
        self.num_labels = num_labels
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
136

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
137
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
138

139
140
141
142
        choice_labels = None
        if self.use_labels:
            choice_labels = ids_tensor([self.batch_size], 2)

Patrick von Platen's avatar
Patrick von Platen committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        config = ReformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            feed_forward_size=self.feed_forward_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            local_attention_probs_dropout_prob=self.local_attention_probs_dropout_prob,
            lsh_attention_probs_dropout_prob=self.lsh_attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            is_decoder=self.is_decoder,
            axial_pos_embds=self.axial_pos_embds,
            axial_pos_shape=self.axial_pos_shape,
            axial_pos_embds_dim=self.axial_pos_embds_dim,
            local_attn_chunk_length=self.local_attn_chunk_length,
            local_num_chunks_after=self.local_num_chunks_after,
            local_num_chunks_before=self.local_num_chunks_before,
            num_hashes=self.num_hashes,
            num_buckets=self.num_buckets,
            lsh_attn_chunk_length=self.lsh_attn_chunk_length,
            lsh_num_chunks_after=self.lsh_num_chunks_after,
            lsh_num_chunks_before=self.lsh_num_chunks_before,
            attn_layers=self.attn_layers,
            pad_token_id=self.pad_token_id,
            hash_seed=self.hash_seed,
Sylvain Gugger's avatar
Sylvain Gugger committed
169
            return_dict=True,
Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
173
174
175
        )

        return (
            config,
            input_ids,
            input_mask,
176
            choice_labels,
Patrick von Platen's avatar
Patrick von Platen committed
177
178
        )

179
    def create_and_check_reformer_model(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
180
181
182
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
Patrick von Platen's avatar
Patrick von Platen committed
185
186

        # 2 * hidden_size because we use reversible resnet layers
Stas Bekman's avatar
Stas Bekman committed
187
188
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.seq_length, 2 * self.hidden_size)
Patrick von Platen's avatar
Patrick von Platen committed
189
190
        )

191
    def create_and_check_reformer_model_with_lm_backward(self, config, input_ids, input_mask, choice_labels):
192
193
194
        config.is_decoder = False
        config.lsh_num_chunks_after = 1
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
195
196
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
197
        loss = model(input_ids, attention_mask=input_mask, labels=input_ids)["loss"]
Patrick von Platen's avatar
Patrick von Platen committed
198
199
        loss.backward()

200
    def create_and_check_reformer_with_lm(self, config, input_ids, input_mask, choice_labels):
201
202
        config.lsh_num_chunks_after = 0
        config.is_decoder = True
Patrick von Platen's avatar
Patrick von Platen committed
203
204
205
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
206
        result = model(input_ids, attention_mask=input_mask, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
207
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Patrick von Platen's avatar
Patrick von Platen committed
208

209
210
211
212
213
    def create_and_check_reformer_with_mlm(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
214
        result = model(input_ids, attention_mask=input_mask, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
215
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
216
217
218
219

    def create_and_check_reformer_model_with_attn_mask(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        # no special position embeddings
        config.axial_pos_embds = False
        config.is_decoder = is_decoder

        if self.lsh_attn_chunk_length is not None:
            # need to set chunk length equal sequence length to be certain that chunking works
            config.lsh_attn_chunk_length = self.seq_length

        model = ReformerModel(config=config)
        model.to(torch_device)
        model.eval()
        # set all position encodings to zero so that postions don't matter
        with torch.no_grad():
            embedding = model.embeddings.position_embeddings.embedding
            embedding.weight = torch.nn.Parameter(torch.zeros(embedding.weight.shape).to(torch_device))
            embedding.weight.requires_grad = False

        half_seq_len = self.seq_length // 2
        roll = self.chunk_length

        half_input_ids = input_ids[:, :half_seq_len]

        # normal padded
Lysandre's avatar
Lysandre committed
243
244
245
246
        attn_mask = torch.cat(
            [torch.ones_like(half_input_ids), torch.zeros_like(half_input_ids)],
            dim=-1,
        )
Patrick von Platen's avatar
Patrick von Platen committed
247
        input_ids_padded = torch.cat(
Lysandre's avatar
Lysandre committed
248
249
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
            dim=-1,
Patrick von Platen's avatar
Patrick von Platen committed
250
251
252
253
        )

        # shifted padded
        input_ids_roll = torch.cat(
Lysandre's avatar
Lysandre committed
254
255
            [half_input_ids, ids_tensor((self.batch_size, half_seq_len), self.vocab_size)],
            dim=-1,
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
259
260
261
262
263
264
        )
        input_ids_roll = torch.roll(input_ids_roll, roll, dims=-1)
        attn_mask_roll = torch.roll(attn_mask, roll, dims=-1)

        output_padded = model(input_ids_padded, attention_mask=attn_mask)[0][:, :half_seq_len]
        output_padded_rolled = model(input_ids_roll, attention_mask=attn_mask_roll)[0][:, roll : half_seq_len + roll]

        self.parent.assertTrue(torch.allclose(output_padded, output_padded_rolled, atol=1e-3))

265
266
267
    def create_and_check_reformer_layer_dropout_seed(
        self, config, input_ids, input_mask, choice_labels, is_decoder=False
    ):
Patrick von Platen's avatar
Patrick von Platen committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        config.is_decoder = is_decoder
        layer = ReformerLayer(config).to(torch_device)
        layer.train()
        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        # get random tensors
        hidden_states = floats_tensor(shape)
        prev_attn_output = floats_tensor(shape)

        # now the random seeds for attention and feed forward is initialized
        # forward tensors with dropout
        layer_outputs = layer(prev_attn_output, hidden_states, attention_mask=input_mask)

        next_attn_output = layer_outputs.attn_output
        next_hidden_states = layer_outputs.hidden_states

        torch.manual_seed(layer.attention_seed)
        attn_outputs = layer.attention(hidden_states, attention_mask=input_mask)
        self.parent.assertTrue(
Lysandre's avatar
Lysandre committed
291
292
293
294
295
            torch.allclose(
                prev_attn_output + attn_outputs.hidden_states,
                next_attn_output,
                atol=1e-3,
            )
Patrick von Platen's avatar
Patrick von Platen committed
296
297
298
299
300
        )

        torch.manual_seed(layer.feed_forward_seed)
        feed_forward_hidden_states = layer.feed_forward(next_attn_output)
        self.parent.assertTrue(
Lysandre's avatar
Lysandre committed
301
302
303
304
305
            torch.allclose(
                next_hidden_states,
                hidden_states + feed_forward_hidden_states,
                atol=1e-3,
            )
Patrick von Platen's avatar
Patrick von Platen committed
306
307
        )

308
    def create_and_check_reformer_feed_backward_chunking(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
        if not self.is_training:
            return

        # disable dropout
        config.hidden_dropout_prob = 0
        config.local_attention_probs_dropout_prob = 0
        config.lsh_attention_probs_dropout_prob = 0
316
317
        config.lsh_num_chunks_after = 1
        config.is_decoder = False
Patrick von Platen's avatar
Patrick von Platen committed
318
319

        torch.manual_seed(0)
320
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
321
322
323
324
325
326
327
328
329
330
331
332
333
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_no_chunk, output_no_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_no_chunk.backward()
        grad_slice_word_no_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_no_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_no_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]

        config.chunk_size_lm_head = 1
        config.chunk_size_feed_forward = 1

        torch.manual_seed(0)
334
        model = ReformerForMaskedLM(config=config)
Patrick von Platen's avatar
Patrick von Platen committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        model.to(torch_device)
        model.train()
        model.zero_grad()
        loss_chunk, output_chunk = model(input_ids, labels=input_ids, attention_mask=input_mask)[:2]
        loss_chunk.backward()
        grad_slice_word_chunk = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        grad_slice_position_factor_1_chunk = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        grad_slice_position_factor_2_chunk = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        self.parent.assertTrue(torch.allclose(loss_chunk, loss_no_chunk, atol=1e-3))
        self.parent.assertTrue(torch.allclose(grad_slice_word_no_chunk, grad_slice_word_chunk, atol=1e-3))
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_1_chunk, grad_slice_position_factor_1_no_chunk, atol=1e-3)
        )
        self.parent.assertTrue(
            torch.allclose(grad_slice_position_factor_2_chunk, grad_slice_position_factor_2_no_chunk, atol=1e-3)
        )

352
    def create_and_check_reformer_random_seed(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        layer = ReformerLayer(config).to(torch_device)
        layer.train()

        shape = (
            self.batch_size,
            self.seq_length,
            config.hidden_size,
        )  # Batch x SeqLen x hiddenSize

        hidden_states = floats_tensor(shape)
        attn_output = floats_tensor(shape)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.attention_seed)
            seeds.append(layer.attention_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

        seeds = []
        for _ in range(100):
            layer_outputs = layer(attn_output, hidden_states, attention_mask=input_mask)
            attn_output = layer_outputs.attn_output
            hidden_states = layer_outputs.hidden_states
            torch.manual_seed(layer.feed_forward_seed)
            seeds.append(layer.feed_forward_seed)
        self.parent.assertGreater(len(set(seeds)), 70)

383
    def create_and_check_reformer_model_fp16_forward(self, config, input_ids, input_mask, choice_labels):
Patrick von Platen's avatar
Patrick von Platen committed
384
385
386
387
        model = ReformerModel(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
Patrick von Platen's avatar
Patrick von Platen committed
388
        output = model(input_ids, attention_mask=input_mask)["last_hidden_state"]
Patrick von Platen's avatar
Patrick von Platen committed
389
390
        self.parent.assertFalse(torch.isnan(output).any().item())

391
392
393
394
395
396
397
398
399
400
401
402
403
    def create_and_check_reformer_model_generate(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = True
        config.lsh_num_chunks_after = 0
        config.bos_token_id = 0
        config.eos_token_id = None
        config.max_length = 20

        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        output = model.generate()
        self.parent.assertIsNotNone(output)

404
    def create_and_check_reformer_model_fp16_generate(self, config, input_ids, input_mask, choice_labels):
405
406
        config.is_decoder = True
        config.lsh_num_chunks_after = 0
Patrick von Platen's avatar
Patrick von Platen committed
407
408
409
410
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.half()
        model.eval()
411
412
        # only use last 10 inputs for generation
        output = model.generate(input_ids[:, -10:], attention_mask=input_mask, do_sample=False)
Patrick von Platen's avatar
Patrick von Platen committed
413
414
        self.parent.assertFalse(torch.isnan(output).any().item())

415
    def create_and_check_reformer_no_chunking(self, config, input_ids, input_mask, choice_labels):
416
417
418
        # force chunk length to be bigger than input_ids
        config.lsh_attn_chunk_length = 2 * input_ids.shape[-1]
        config.local_attn_chunk_length = 2 * input_ids.shape[-1]
419
420
421
        config.lsh_num_chunks_after = 1
        config.is_decoder = False
        model = ReformerForMaskedLM(config=config)
422
423
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
424
        output_logits = model(input_ids, attention_mask=input_mask)["logits"]
425
426
        self.parent.assertTrue(output_logits.shape[1] == input_ids.shape[-1])

427
    def create_and_check_reformer_for_question_answering(self, config, input_ids, input_mask, choice_labels):
428
429
430
        model = ReformerForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
431
        result = model(
Lysandre's avatar
Lysandre committed
432
433
434
435
            input_ids,
            attention_mask=input_mask,
            start_positions=choice_labels,
            end_positions=choice_labels,
436
        )
Stas Bekman's avatar
Stas Bekman committed
437
438
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
439

440
441
442
443
444
445
446
447
448
449
450
    def create_and_check_past_buckets_states(self, config, input_ids, input_mask, choice_labels):
        config.is_decoder = True
        config.lsh_num_chunks_before = 1
        config.lsh_num_chunks_after = 0
        model = ReformerModelWithLMHead(config=config)
        model.to(torch_device)
        model.eval()
        input_ids_first = input_ids[:, :-1]
        input_ids_second = input_ids[:, -1:]

        # return saved cache
Sylvain Gugger's avatar
Sylvain Gugger committed
451
        past_buckets_states = model(input_ids_first, use_cache=True)["past_buckets_states"]
452
453

        # calculate last output with and without cache
Sylvain Gugger's avatar
Sylvain Gugger committed
454
455
        outputs_with_cache = model(input_ids_second, past_buckets_states=past_buckets_states, use_cache=True)["logits"]
        outputs_without_cache = model(input_ids)["logits"][:, -1]
456
457
458
459
460
461
462
463
464
465
466

        # select random slice idx
        random_slice_idx = torch.randint(outputs_without_cache.shape[-1], (1, 1), device=torch_device).item()

        # outputs should be similar within range
        self.parent.assertTrue(
            torch.allclose(
                outputs_with_cache[:, 0, random_slice_idx], outputs_without_cache[:, random_slice_idx], atol=1e-2
            )
        )

Patrick von Platen's avatar
Patrick von Platen committed
467
468
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
469
        (config, input_ids, input_mask, choice_labels) = config_and_inputs
Patrick von Platen's avatar
Patrick von Platen committed
470
471
472
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict

473
474
475
476
477
478
479
480
    def create_and_check_reformer_for_sequence_classification(
        self, config, input_ids, input_mask, choice_labels, is_decoder
    ):
        config.is_decoder = is_decoder
        sequence_labels = ids_tensor([self.batch_size], config.num_labels)
        model = ReformerForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
481
        result = model(input_ids, attention_mask=input_mask, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
482
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
483

Patrick von Platen's avatar
Patrick von Platen committed
484
485
486

class ReformerTesterMixin:
    """
Lysandre's avatar
Lysandre committed
487
    Reformer Local and Reformer LSH run essentially the same tests
Patrick von Platen's avatar
Patrick von Platen committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    """

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_reformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model(*config_and_inputs)

    def test_reformer_lm_model_backward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_with_lm_backward(*config_and_inputs)

    def test_reformer_model_attn_masking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
503
504
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_model_with_attn_mask(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
505
506
507
508
509

    def test_reformer_with_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_lm(*config_and_inputs)

510
511
512
513
    def test_reformer_with_mlm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_with_mlm(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
514
515
    def test_reformer_layer_training_dropout(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
516
517
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=True)
        self.model_tester.create_and_check_reformer_layer_dropout_seed(*config_and_inputs, is_decoder=False)
Patrick von Platen's avatar
Patrick von Platen committed
518
519
520
521
522

    def test_reformer_chunking_backward_equality(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_feed_backward_chunking(*config_and_inputs)

523
524
525
526
    def test_reformer_no_chunking(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_no_chunking(*config_and_inputs)

527
528
529
530
531
532
533
534
535
536
537
538
    def test_reformer_qa_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_question_answering(*config_and_inputs)

    def test_reformer_cached_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_past_buckets_states(*config_and_inputs)

    def test_reformer_cached_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_generate(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    @slow
    def test_dropout_random_seed_is_changing(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_random_seed(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_forward(*config_and_inputs)

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_reformer_model_fp16_generate(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_model_fp16_generate(*config_and_inputs)

554
555
556
557
558
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        # Opt-out of this test.
        pass

559
560
561
562
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_reformer_for_sequence_classification(*config_and_inputs, is_decoder=False)

Patrick von Platen's avatar
Patrick von Platen committed
563
564

@require_torch
565
class ReformerLocalAttnModelTest(ReformerTesterMixin, ModelTesterMixin, unittest.TestCase):
566
    all_model_classes = (
567
568
569
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
570
    )
Patrick von Platen's avatar
Patrick von Platen committed
571
572
573
574
575
576
577
578
579
580
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def prepare_kwargs(self):
        return {
            "batch_size": 13,
            "seq_length": 32,
            "is_training": True,
581
            "is_decoder": True,
Patrick von Platen's avatar
Patrick von Platen committed
582
            "use_input_mask": True,
583
            "use_labels": True,
Patrick von Platen's avatar
Patrick von Platen committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
            "vocab_size": 32,
            "attention_head_size": 16,
            "hidden_size": 32,
            "num_attention_heads": 2,
            "local_attn_chunk_length": 4,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.1,
            "local_attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [16, 16],
            "attn_layers": ["local", "local", "local", "local"],
            "pad_token_id": 0,
            "eos_token_id": 2,
            "scope": None,
            "hash_seed": 0,
609
            "num_labels": 2,
Patrick von Platen's avatar
Patrick von Platen committed
610
611
612
613
614
615
616
617
618
        }

    def setUp(self):
        tester_kwargs = self.prepare_kwargs()
        self.model_tester = ReformerModelTester(self, **tester_kwargs)
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)

    @slow
    def test_model_from_pretrained(self):
619
        for model_name in REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
Patrick von Platen's avatar
Patrick von Platen committed
620
621
622
623
624
            model = ReformerModelWithLMHead.from_pretrained(model_name)
            self.assertIsNotNone(model)


@require_torch
625
class ReformerLSHAttnModelTest(ReformerTesterMixin, ModelTesterMixin, unittest.TestCase):
626
    all_model_classes = (
627
628
629
        (ReformerModel, ReformerModelWithLMHead, ReformerForSequenceClassification, ReformerForQuestionAnswering)
        if is_torch_available()
        else ()
630
    )
Patrick von Platen's avatar
Patrick von Platen committed
631
632
633
634
635
636
637
638
639
640
    all_generative_model_classes = (ReformerModelWithLMHead,) if is_torch_available() else ()
    test_pruning = False
    test_headmasking = False
    test_torchscript = False

    def prepare_kwargs(self):
        return {
            "batch_size": 13,
            "seq_length": 13,
            "use_input_mask": True,
641
            "use_labels": True,
Patrick von Platen's avatar
Patrick von Platen committed
642
            "is_training": False,
643
            "is_decoder": True,
Patrick von Platen's avatar
Patrick von Platen committed
644
645
646
647
648
649
650
            "vocab_size": 32,
            "attention_head_size": 16,
            "hidden_size": 64,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
651
652
            "lsh_num_chunks_before": 1,
            "lsh_num_chunks_after": 0,
Patrick von Platen's avatar
Patrick von Platen committed
653
654
655
656
657
658
659
660
661
662
663
664
665
            "chunk_size_lm_head": 5,
            "chunk_size_feed_forward": 6,
            "feed_forward_size": 32,
            "hidden_act": "relu",
            "hidden_dropout_prob": 0.1,
            "lsh_attention_probs_dropout_prob": 0.1,
            "max_position_embeddings": 512,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [16, 48],
666
667
668
            #            sanotheu
            #            "attn_layers": ["lsh", "lsh", "lsh", "lsh"],
            "attn_layers": ["lsh"],
Patrick von Platen's avatar
Patrick von Platen committed
669
670
671
672
            "pad_token_id": 0,
            "eos_token_id": 2,
            "scope": None,
            "hash_seed": 0,
673
            "num_labels": 2,
Patrick von Platen's avatar
Patrick von Platen committed
674
675
676
677
678
679
680
681
682
683
684
        }

    def setUp(self):
        tester_kwargs = self.prepare_kwargs()
        self.model_tester = ReformerModelTester(self, **tester_kwargs)
        self.config_tester = ConfigTester(self, config_class=ReformerConfig, hidden_size=37)


@require_torch
class ReformerIntegrationTests(unittest.TestCase):
    """
685
    These integration tests test the current layer activations and gradients againts the output of the Hugging Face Reformer model at time of integration: 29/06/2020. During integration, the model was tested against the output of the official Trax ReformerLM model for various cases ("lsh" only, "local" only, masked / non-masked, different chunk length, ....). In order to recover the original trax integration tests, one should use patrickvonplaten's fork of trax and the code that lives on the branch `reformer_trax_tests`.
Patrick von Platen's avatar
Patrick von Platen committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    """

    def _get_basic_config_and_input(self):
        config = {
            "vocab_size": 320,
            "attention_head_size": 8,
            "hidden_size": 16,
            "num_attention_heads": 2,
            "num_buckets": 2,
            "num_hashes": 4,
            "lsh_attn_chunk_length": 4,
            "local_attn_chunk_length": 4,
            "lsh_num_chunks_before": 1,
            "lsh_num_chunks_after": 0,
            "local_num_chunks_before": 1,
            "local_num_chunks_after": 0,
            "chunk_size_lm_head": 0,
            "chunk_size_feed_forward": 0,
            "feed_forward_size": 32,
            "hidden_act": "gelu",
            "hidden_dropout_prob": 0.0,
            "lsh_attention_probs_dropout_prob": 0.0,
            "local_attention_probs_dropout_prob": 0.0,
            "max_position_embeddings": 32,
            "initializer_range": 0.02,
            "axial_norm_std": 1.0,
            "layer_norm_eps": 1e-12,
            "sinusoidal_pos_embds": False,
            "axial_pos_embds": True,
            "axial_pos_shape": [4, 8],
            "axial_pos_embds_dim": [8, 8],
            "hash_seed": 0,
            "is_decoder": True,
        }
        return config

    def _get_hidden_states(self):
        return torch.tensor(
            [
                [
                    [
                        1.90826353e00,
                        -1.45999730e00,
                        -6.20405462e-01,
                        1.52503433e00,
                        -3.64464232e-01,
                        -8.27359235e-01,
                        8.39670803e-01,
                        2.44492178e-01,
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -2.66374286e-02,
                        4.33497576e-01,
                        3.10386309e-01,
                        5.46039944e-01,
                        -2.47292666e-04,
                        -7.52305019e-01,
                        2.39162103e-01,
                        7.25216186e-01,
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        1.85247482e-01,
                        7.07046037e-01,
                        -6.77089715e-01,
                        -2.24209655e00,
                        -3.75307980e-02,
                        -8.59380874e-01,
                        -2.81027884e00,
                        1.01276376e00,
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        9.46069193e-01,
                        1.53417623e-01,
                        -9.58686996e-01,
                        1.18126669e-01,
                        1.75967724e00,
                        1.62194590e00,
                        -5.74108159e-01,
                        6.79920443e-01,
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=torch.float32,
            device=torch_device,
        )

    def _get_attn_mask(self):
        return torch.tensor([[0, 1, 0, 0]], dtype=torch.long, device=torch_device)

    def _get_input_ids_and_mask(self):
        mask = torch.tensor(
            [
                [1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1],
                [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        input_ids = torch.tensor(
            [
                [
                    89,
                    279,
                    286,
                    84,
                    194,
                    316,
                    182,
                    28,
                    283,
                    37,
                    169,
                    7,
                    253,
                    267,
                    107,
                    250,
                    44,
                    7,
                    102,
                    62,
                    3,
                    243,
                    171,
                    265,
                    302,
                    48,
                    164,
                    264,
                    148,
                    229,
                    280,
                    150,
                ],
                [
                    9,
                    192,
                    66,
                    112,
                    163,
                    83,
                    135,
                    70,
                    224,
                    96,
                    31,
                    80,
                    196,
                    80,
                    63,
                    22,
                    85,
                    100,
                    47,
                    283,
                    0,
                    163,
                    126,
                    143,
                    195,
                    82,
                    53,
                    82,
                    18,
                    27,
                    182,
                    52,
                ],
            ],
            dtype=torch.long,
            device=torch_device,
        )

        return input_ids, mask

    def test_lsh_layer_forward(self):
        config = self._get_basic_config_and_input()
896
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
897
898
899
900
901
902
903
904
905
        config["attn_layers"] = ["lsh"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states.clone(), hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
906
907
908
            [1.6879, -1.3083, -0.4708, 1.3555, -0.6292],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
909
910
911
912
913
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
914
        config["lsh_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
915
916
917
918
919
920
921
922
        config["attn_layers"] = ["lsh"]
        config["num_buckets"] = [2, 4]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(
Lysandre's avatar
Lysandre committed
923
924
925
            prev_attn_output=hidden_states.clone(),
            hidden_states=hidden_states,
            attention_mask=attn_mask,
Patrick von Platen's avatar
Patrick von Platen committed
926
927
928
        )
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
929
930
931
            [1.6439, -1.2306, -0.5108, 1.3006, -0.6537],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
932
933
934
935
936
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward(self):
        config = self._get_basic_config_and_input()
937
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
938
939
940
941
942
943
944
945
946
        config["attn_layers"] = ["local"]
        config["is_decoder"] = False
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
        reformer_output = layer(prev_attn_output=hidden_states, hidden_states=hidden_states)
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
947
948
949
            [1.4212, -2.0576, -0.9688, 1.4599, -0.1344],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
950
951
952
953
954
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_layer_forward_complex(self):
        config = self._get_basic_config_and_input()
955
        config["local_num_chunks_before"] = 0
Patrick von Platen's avatar
Patrick von Platen committed
956
957
958
959
960
961
        config["attn_layers"] = ["local"]
        attn_mask = self._get_attn_mask()
        hidden_states = self._get_hidden_states()
        torch.manual_seed(0)
        layer = ReformerLayer(ReformerConfig(**config)).to(torch_device)
        layer.eval()
Lysandre's avatar
Lysandre committed
962
963
964
965
966
        reformer_output = layer(
            prev_attn_output=hidden_states,
            hidden_states=hidden_states,
            attention_mask=attn_mask,
        )
Patrick von Platen's avatar
Patrick von Platen committed
967
968
        output_slice = reformer_output.hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
969
970
971
            [1.4750, -2.0235, -0.9743, 1.4463, -0.1269],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
972
973
974
975
976
977
978
979
980
981
982
983
984
985
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lsh_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["num_buckets"] = [2, 4]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
986
987
988
            [-0.9896, -0.9396, -1.0831, -0.0597, 0.2456],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        torch.manual_seed(0)
        model = ReformerModel(ReformerConfig(**config)).to(torch_device)
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[0, 0, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1002
1003
1004
            [-1.6791, 0.7171, 0.1594, 0.4063, 1.2584],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_lm_model_forward(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "lsh", "local", "lsh", "local", "lsh"]
        config["num_buckets"] = [2, 4]
        config["is_decoder"] = False
        torch.manual_seed(0)
1014
        model = ReformerForMaskedLM(ReformerConfig(**config)).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1015
1016
1017
1018
1019
        model.eval()
        input_ids, attn_mask = self._get_input_ids_and_mask()
        hidden_states = model(input_ids=input_ids, attention_mask=attn_mask)[0]
        output_slice = hidden_states[1, -1, :5]
        expected_output_slice = torch.tensor(
Lysandre's avatar
Lysandre committed
1020
1021
1022
            [0.0256, -0.0121, 0.0636, 0.0024, -0.0393],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
        )
        self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))

    def test_local_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["local", "local", "local", "local"]
        config["hidden_dropout_prob"] = 0.0
        config["local_attention_probs_dropout_prob"] = 0.0
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7786, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()

        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
Lysandre's avatar
Lysandre committed
1044
1045
1046
            [-0.0005, 0.0001, 0.0002, 0.0003, 0.0006],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1047
1048
1049
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
Lysandre's avatar
Lysandre committed
1050
1051
1052
            [0.0037, -1.3793, -1.0231, -1.5230, -2.5306],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1053
1054
1055
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
Lysandre's avatar
Lysandre committed
1056
1057
1058
            [-1.3165, 0.5168, 0.7785, 1.0811, -0.9830],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    def test_lsh_lm_model_grad(self):
        config = self._get_basic_config_and_input()
        config["attn_layers"] = ["lsh", "lsh", "lsh", "lsh"]
        config["hidden_dropout_prob"] = 0.0
        config["lsh_attention_probs_dropout_prob"] = 0.0
        config["num_buckets"] = [2, 4]
        config["num_hashes"] = 6
        torch.manual_seed(0)
        model = ReformerModelWithLMHead(ReformerConfig(**config)).to(torch_device)
        model.train()
        model.zero_grad()
        input_ids, _ = self._get_input_ids_and_mask()
        loss = model(input_ids=input_ids, labels=input_ids)[0]

        self.assertTrue(torch.allclose(loss, torch.tensor(5.7819, dtype=torch.float, device=torch_device), atol=1e-3))
        loss.backward()
        # check last grads to cover all proable errors
        grad_slice_word = model.reformer.embeddings.word_embeddings.weight.grad[0, :5]
        expected_grad_slice_word = torch.tensor(
Lysandre's avatar
Lysandre committed
1083
1084
1085
            [2.6357e-05, 4.3358e-04, -8.4985e-04, 1.0094e-04, 3.8954e-04],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1086
1087
1088
        )
        grad_slice_position_factor_1 = model.reformer.embeddings.position_embeddings.weights[0][1, 0, -5:]
        expected_grad_slice_pos_fac_1 = torch.tensor(
Lysandre's avatar
Lysandre committed
1089
1090
1091
            [-0.0984, 0.6283, 0.4282, 1.2960, 0.6897],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1092
1093
1094
        )
        grad_slice_position_factor_2 = model.reformer.embeddings.position_embeddings.weights[1][0, 1, :5]
        expected_grad_slice_pos_fac_2 = torch.tensor(
Lysandre's avatar
Lysandre committed
1095
1096
1097
            [0.4626, -0.0231, -0.0172, 0.1081, 0.3805],
            dtype=torch.float,
            device=torch_device,
Patrick von Platen's avatar
Patrick von Platen committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        )
        self.assertTrue(torch.allclose(grad_slice_word, expected_grad_slice_word, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_1, expected_grad_slice_pos_fac_1, atol=1e-3))
        self.assertTrue(torch.allclose(grad_slice_position_factor_2, expected_grad_slice_pos_fac_2, atol=1e-3))

    @slow
    def test_pretrained_generate_crime_and_punish(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()

        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids = model.generate(
            input_ids, max_length=50, num_beams=4, early_stopping=True, do_sample=False, num_hashes=8
        )
1113
1114
        output = tokenizer.decode(output_ids[0])

Patrick von Platen's avatar
Patrick von Platen committed
1115
        self.assertEqual(
1116
            output,
Patrick von Platen's avatar
Patrick von Platen committed
1117
1118
            "A few months later state expression in his ideas, at the first entrance. He was positively for an inst",
        )
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

    @slow
    def test_pretrained_generate_use_cache_equality(self):
        model = ReformerModelWithLMHead.from_pretrained("google/reformer-crime-and-punishment").to(torch_device)
        tokenizer = ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")
        model.eval()
        input_ids = tokenizer.encode("A few months later", return_tensors="pt").to(torch_device)
        output_ids_with_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=False)
        output_ids_without_cache = model.generate(input_ids, max_length=130, num_hashes=8, use_cache=True)

        output_with_cache = tokenizer.decode(output_ids_with_cache[0])
        output_without_cache = tokenizer.decode(output_ids_without_cache[0])

        self.assertEqual(output_with_cache, output_without_cache)