modeling_xlnet.py 59.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
32
from torch.nn import functional as F
thomwolf's avatar
thomwolf committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from torch.nn import CrossEntropyLoss

from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}
XLNET_CONFIG_NAME = 'xlnet_config.json'
TF_WEIGHTS_NAME = 'model.ckpt'

thomwolf's avatar
thomwolf committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

def build_tf_xlnet_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
        # We are loading pre-trained weights in a XLNetLMHeadModel => we will load also the output bias
        tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
                    'model/transformer/mask_emb/mask_emb': model.mask_emb})

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
110
111
112
113
114
115
116
117
118
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
thomwolf's avatar
thomwolf committed
119
120
121
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config)

thomwolf's avatar
thomwolf committed
122
123
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
124
    tf_weights = {}
thomwolf's avatar
thomwolf committed
125
126
127
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
128
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
129

thomwolf's avatar
thomwolf committed
130
131
132
133
    for name, pointer in tf_to_pt_map.items():
        print("Importing {}".format(name))
        assert name in tf_weights
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
134
135
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
thomwolf's avatar
thomwolf committed
136
137
        if 'kernel' in name and 'ff' in name:
            print("Transposing")
thomwolf's avatar
thomwolf committed
138
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
                print("Initialize PyTorch weight {} for layer {}".format(name, i))
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
            print("Initialize PyTorch weight {}".format(name))
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

    print("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
164
165
166
167
    return model


def gelu(x):
168
169
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
170
171
        Also see https://arxiv.org/abs/1606.08415
    """
172
173
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
174
175
176
177
178
179
180
181
182
183
184


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}

class XLNetBaseConfig(object):
    @classmethod
    def from_dict(cls, json_object):
thomwolf's avatar
thomwolf committed
185
186
        """Constructs a `XLNetBaseConfig` from a Python dictionary of parameters."""
        config = cls(vocab_size_or_config_json_file=-1)
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
thomwolf's avatar
thomwolf committed
193
        """Constructs a `XLNetBaseConfig` from a json file of parameters."""
thomwolf's avatar
thomwolf committed
194
195
196
197
        with open(json_file, "r", encoding='utf-8') as reader:
            text = reader.read()
        return cls.from_dict(json.loads(text))

thomwolf's avatar
thomwolf committed
198
199
200
201
202
    def update(self, other):
        dict_b = other.to_dict()
        for key, value in dict_b.items():
            self.__dict__[key] = value

thomwolf's avatar
thomwolf committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())


class XLNetConfig(XLNetBaseConfig):
    """Configuration class to store the configuration of a `XLNetModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file,
thomwolf's avatar
thomwolf committed
226
227
228
229
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
230
231
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
232
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
233
234
235

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
236
237
238
239
240
241
242
243
244
245
246
247
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False):
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
254
255
256
257
258
259
260
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
261
            attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
thomwolf's avatar
thomwolf committed
262
263
264
265
266
267
268
269
270
271
272

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
297
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
298
299
300
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
301
302
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
303
304
305
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
306
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
307

thomwolf's avatar
thomwolf committed
308
309
310
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
321

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
322
323
324
325
326
327
328
329
330
331
332
333
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


class XLNetRunConfig(XLNetBaseConfig):
    """XLNetRunConfig contains hyperparameters that could be different
    between pretraining and finetuning.
    These hyperparameters can also be changed from run to run.
    We store them separately from XLNetConfig for flexibility.
    """
    def __init__(self, 
thomwolf's avatar
thomwolf committed
334
335
                 dropout=0.1,
                 dropatt=0.1,
thomwolf's avatar
thomwolf committed
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False):
        """
        Args:
        dropout: float, dropout rate.
        dropatt: float, dropout rate on attention probabilities.
        init: str, the initialization scheme, either "normal" or "uniform".
        init_range: float, initialize the parameters with a uniform distribution
            in [-init_range, init_range]. Only effective when init="uniform".
        init_std: float, initialize the parameters with a normal distribution
            with mean 0 and stddev init_std. Only effective when init="normal".
        mem_len: int, the number of tokens to cache.
        reuse_len: int, the number of tokens in the currect batch to be cached
            and reused in the future.
        bi_data: bool, whether to use bidirectional input pipeline.
            Usually set to True during pretraining and False during finetuning.
        clamp_len: int, clamp all relative distances larger than clamp_len.
            -1 means no clamping.
        same_length: bool, whether to use the same attention length for each token.
        """

        self.init = init
        self.init_range = init_range
        self.init_std = init_std
        self.dropout = dropout
        self.dropatt = dropatt
        self.mem_len = mem_len
        self.reuse_len = reuse_len
        self.bi_data = bi_data
        self.clamp_len = clamp_len
        self.same_length = same_length

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
379
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
380
381
382
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
383
384
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
393
394
395
396
class XLNetRelativeAttention(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetRelativeAttention, self).__init__()
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
397
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
398
399
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
400
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
401
402
403
404
        self.output_attentions = output_attentions
        self.keep_multihead_output = keep_multihead_output
        self.multihead_output = None

thomwolf's avatar
thomwolf committed
405
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
406
407
408
409
410
411
412
413
414
415
416
417
418
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
419
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
420

thomwolf's avatar
thomwolf committed
421
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
422
423
424
425
426
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
427
428
429
430
431
432
433
434
435
436
437
438
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
        x = x[:, 0:klen, :, :]

        return x

thomwolf's avatar
thomwolf committed
439
440
441
442
443
444
445
446
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None):
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
447
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
479
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g)

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h)

            # post processing
thomwolf's avatar
thomwolf committed
551
552
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571


        # Mask heads if we want to
        # if head_mask is not None:
        #     attention_probs = attention_probs * head_mask

        # context_layer = torch.matmul(attention_probs, value_layer)
        # if self.keep_multihead_output:
        #     self.multihead_output = context_layer
        #     self.multihead_output.retain_grad()

        # context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        # new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        # context_layer = context_layer.view(*new_context_layer_shape)

        # if self.output_attentions:
        #     attentions, self_output = self_output
        # if self.output_attentions:
        #     return attentions, attention_output
thomwolf's avatar
thomwolf committed
572
        return output_h, output_g
thomwolf's avatar
thomwolf committed
573
574
575
576

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
577
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
578
579
580
581
582
583
584
585
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
        if isinstance(config.ff_activation, str) or (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
586
587
588
589
590
591
592
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
593
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
594
        return output
thomwolf's avatar
thomwolf committed
595
596
597
598
599
600
601
602
603
604
605
606

class XLNetLayer(nn.Module):
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
        super(XLNetLayer, self).__init__()
        self.output_attentions = output_attentions
        self.rel_attn = XLNetRelativeAttention(config, output_attentions=output_attentions,
                                               keep_multihead_output=keep_multihead_output)
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
thomwolf's avatar
thomwolf committed
607
608
                r, seg_mat,
                mems=None, target_mapping=None, head_mask=None):
thomwolf's avatar
thomwolf committed
609
610
611
612
        output_h, output_g = self.rel_attn(output_h, output_g,
                                           attn_mask_h, attn_mask_g,
                                           r, seg_mat,
                                           mems=mems, target_mapping=target_mapping, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
613
        if output_g is not None:
thomwolf's avatar
thomwolf committed
614
615
616
617
618
619
620
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

        # if self.output_attentions:
        #     return attentions, layer_output
        return output_h, output_g

thomwolf's avatar
thomwolf committed
621
622
623
624
625
626
class XLNetPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__()
thomwolf's avatar
thomwolf committed
627
        if not isinstance(config, XLNetBaseConfig):
thomwolf's avatar
thomwolf committed
628
            raise ValueError(
thomwolf's avatar
thomwolf committed
629
                "Parameter config in `{}(config)` should be an instance of class `XLNetBaseConfig`. "
thomwolf's avatar
thomwolf committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_xlnet_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        """
        Instantiate a XLNetPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `xlnet-large-cased`
                - a path or url to a pretrained model archive containing:
660
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
                    . `pytorch_model.bin` a PyTorch dump of a XLNetForPreTraining instance
                - a path or url to a pretrained model archive containing:
                    . `xlnet_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
            *inputs, **kwargs: additional input for the specific XLNet class
                (ex: num_labels for XLNetForSequenceClassification)
        """
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
            config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
        else:
            if from_tf:
                # Directly load from a TensorFlow checkpoint
                archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME)
                config_file = os.path.join(pretrained_model_name_or_path, XLNET_CONFIG_NAME)
            else:
                archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
        # redirect to the cache, if necessary
        try:
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained weights.".format(
                        archive_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
                        archive_file))
            return None
        try:
            resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
        except EnvironmentError:
            if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
                logger.error(
                    "Couldn't reach server at '{}' to download pretrained model configuration file.".format(
                        config_file))
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find any file "
                    "associated to this path or url.".format(
                        pretrained_model_name_or_path,
                        ', '.join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()),
                        config_file))
            return None
        if resolved_archive_file == archive_file and resolved_config_file == config_file:
            logger.info("loading weights file {}".format(archive_file))
            logger.info("loading configuration file {}".format(config_file))
        else:
            logger.info("loading weights file {} from cache at {}".format(
                archive_file, resolved_archive_file))
            logger.info("loading configuration file {} from cache at {}".format(
                config_file, resolved_config_file))
730

thomwolf's avatar
thomwolf committed
731
732
        # Load config
        config = XLNetConfig.from_json_file(resolved_config_file)
733
734

        # Update config with kwargs if needed
735
736
        to_remove = []
        for key, value in kwargs.items():
737
738
            if hasattr(config, key):
                setattr(config, key, value)
739
740
741
742
743
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)

        logger.info("Model config {}".format(config))
744

thomwolf's avatar
thomwolf committed
745
746
747
748
749
750
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        if state_dict is None and not from_tf:
            state_dict = torch.load(resolved_archive_file, map_location='cpu')
        if from_tf:
            # Directly load from a TensorFlow checkpoint
751
752
            return load_tf_weights_in_xlnet(model, config, resolved_archive_file)

thomwolf's avatar
thomwolf committed
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
        # Load from a PyTorch state_dict
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
        start_prefix = ''
771
772
        if not hasattr(model, 'transformer') and any(s.startswith('transformer') for s in state_dict.keys()):
            start_prefix = 'transformer.'
thomwolf's avatar
thomwolf committed
773
774
775
776
777
778
779
780
781
782
        load(model, prefix=start_prefix)
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
                               model.__class__.__name__, "\n\t".join(error_msgs)))
783
784
        if isinstance(model, XLNetLMHeadModel):
            model.tie_weights()  # make sure word embedding weights are still tied
thomwolf's avatar
thomwolf committed
785
786
787
788
        return model


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
789
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
790
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
791
792
793
        self.output_attentions = output_attentions
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
794
795
796
797
798
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
799

thomwolf's avatar
thomwolf committed
800
801
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
thomwolf's avatar
thomwolf committed
802
803
804
805
        layer = XLNetLayer(config, output_attentions=output_attentions,
                                   keep_multihead_output=keep_multihead_output)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layer)])
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
806

thomwolf's avatar
thomwolf committed
807
808
809
810
811
812
813
814
815
816
817
818
819
    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.layer]

thomwolf's avatar
thomwolf committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
857
858
859
860
861
862
863
864
865
866
867
868
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
869
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
870
871
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
        inv_freq = 1 / (10000 ** (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
872
873
874
875
876
877
878
879
880
881
882

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
883
884
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
885
886
887
888
889
890

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
891
892
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
893
            else:
thomwolf's avatar
thomwolf committed
894
895
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
896
897
898

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
899
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
900
901
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
902
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
903

thomwolf's avatar
thomwolf committed
904
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
905
906
        return pos_emb

thomwolf's avatar
thomwolf committed
907
    def forward(self, inp_k, seg_id=None, input_mask=None,
thomwolf's avatar
thomwolf committed
908
909
910
911
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                output_all_encoded_layers=True, head_mask=None):
        """
        Args:
912
913
914
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            seg_id: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
915
                0 for real tokens and 1 for padding.
thomwolf's avatar
thomwolf committed
916
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
917
918
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
919
920
921
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
922
                If None, each position attends to all the others.
923
924
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
925
926
927
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
928
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
944
945
946
947
948
949
950
951
952
953
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
        inp_k = inp_k.transpose(0, 1).contiguous()
        seg_id = seg_id.transpose(0, 1).contiguous() if seg_id is not None else None
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
954
        qlen, bsz = inp_k.shape[0], inp_k.shape[1]
thomwolf's avatar
thomwolf committed
955
956
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
957
958
959

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
960
961
962
963

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
964
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
983
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
984
985
986
987
988
989
990
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
991
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
992
993

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
994
995
996
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
997
998
999
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
1000
1001
        ##### Word embeddings and prepare h & g hidden states
        word_emb_k = self.word_embedding(inp_k)
thomwolf's avatar
thomwolf committed
1002
1003
1004
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
1005
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
1006
1007
            else:
                inp_q_ext = inp_q[:, :, None]
1008
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
1009
1010
1011
1012
1013
1014
1015
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
        if seg_id is not None:
            # Convert `seg_id` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
1016
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
1017
1018
1019
1020
            cat_ids = torch.cat([mem_pad, seg_id], dim=0)

            # `1` indicates not in the same segment [qlen x klen x bsz]
            seg_mat = (seg_id[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
1021
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
1022
1023
1024
1025
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
1026
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
1027
1028
1029
1030
1031
        pos_emb = self.dropout(pos_emb)

        ##### Head mask if needed (for bertology/pruning)
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
1032
1033
        # input head_mask has shape [num_heads] or [n_layer x num_heads]
        # and head_mask is converted to shape [n_layer x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
1034
1035
1036
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
1037
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
1038
1039
1040
1041
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
1042
            head_mask = [None] * self.config.n_layer
thomwolf's avatar
thomwolf committed
1043
1044
1045
1046
1047

        new_mems = []
        if mems is None:
            mems = [None] * len(self.layer)

1048
        hidden_states = []
thomwolf's avatar
thomwolf committed
1049
1050
1051
1052
1053
        for i, layer_module in enumerate(self.layer):
            # cache new mems
            new_mems.append(self.cache_mem(output_h, mems[i]))

            output_h, output_g = layer_module(output_h, output_g,
thomwolf's avatar
thomwolf committed
1054
1055
                                              attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                              r=pos_emb, seg_mat=seg_mat,
thomwolf's avatar
thomwolf committed
1056
1057
                                              mems=mems[i], target_mapping=target_mapping,
                                              head_mask=head_mask)
1058
            hidden_states.append(output_h)
thomwolf's avatar
thomwolf committed
1059
1060
        output = self.dropout(output_g if output_g is not None else output_h)

1061
1062
1063
1064
1065
        # We transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
        output = output.permute(1, 0, 2).contiguous()
        hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]

        return output, hidden_states, new_mems
thomwolf's avatar
thomwolf committed
1066
1067
1068


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        seg_id: int32 Tensor in shape [bsz, len], the input segment IDs.
        input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
            0 for real tokens and 1 for padding.
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
thomwolf's avatar
thomwolf committed
1098
1099
1100
1101
1102
1103


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
1104
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
1105
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
1106
1107
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
1118
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
1119
        n_layer=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1120
1121
1122
1123
1124

    model = modeling.XLNetModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1125
    def __init__(self, config, output_attentions=False, keep_multihead_output=False):
thomwolf's avatar
thomwolf committed
1126
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
1127
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
1128
1129
        self.attn_type = config.attn_type
        self.same_length = config.same_length
thomwolf's avatar
thomwolf committed
1130

thomwolf's avatar
thomwolf committed
1131
1132
        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)
thomwolf's avatar
thomwolf committed
1133
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
1134

thomwolf's avatar
thomwolf committed
1135
1136
        # Tie weights

thomwolf's avatar
thomwolf committed
1137
        self.apply(self.init_xlnet_weights)
thomwolf's avatar
thomwolf committed
1138
        self.tie_weights()
thomwolf's avatar
thomwolf committed
1139

thomwolf's avatar
thomwolf committed
1140
1141
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
1142
        """
thomwolf's avatar
thomwolf committed
1143
        self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
1144

thomwolf's avatar
thomwolf committed
1145
1146
    def forward(self, inp_k, seg_id=None, input_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
thomwolf's avatar
thomwolf committed
1147
                target=None, output_all_encoded_layers=True, head_mask=None):
thomwolf's avatar
thomwolf committed
1148
1149
        """
        Args:
1150
1151
1152
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            seg_id: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
1153
1154
1155
1156
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1157
1158
1159
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1160
                If None, each position attends to all the others.
1161
1162
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1163
1164
1165
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1166
            inp_q: float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1167
1168
1169
1170
1171
1172
1173
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
        output, hidden_states, new_mems = self.transformer(inp_k, seg_id, input_mask,
                                            mems, perm_mask, target_mapping, inp_q,
                                            output_all_encoded_layers, head_mask)

        logits = self.lm_loss(output)

        if target is not None:
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
                            target.view(-1))
            return loss, new_mems

        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # sequence_output = encoded_layers[-1]
        # pooled_output = self.pooler(sequence_output)
        # if not output_all_encoded_layers:
        #     encoded_layers = encoded_layers[-1]
        # if self.output_attentions:
        return logits, new_mems
        #     return all_attentions, encoded_layers, pooled_output


class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        seg_id: int32 Tensor in shape [bsz, len], the input segment IDs.
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
            0 for real tokens and 1 for padding.
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
            if target is None:
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `target`

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config, summary_type="last", output_attentions=False, keep_multihead_output=False):
        super(XLNetForSequenceClassification, self).__init__(config)
        self.output_attentions = output_attentions
        self.attn_type = config.attn_type
        self.same_length = config.same_length
        self.summary_type = summary_type

        self.transformer = XLNetModel(config, output_attentions=output_attentions,
                                              keep_multihead_output=keep_multihead_output)
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)

        self.apply(self.init_xlnet_weights)
        self.tie_weights()

    def forward(self, inp_k, seg_id=None, input_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
                target=None, output_all_encoded_layers=True, head_mask=None):
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            seg_id: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
        output, hidden_states, new_mems = self.transformer(inp_k, seg_id, input_mask,
thomwolf's avatar
thomwolf committed
1299
1300
                                            mems, perm_mask, target_mapping, inp_q,
                                            output_all_encoded_layers, head_mask)
thomwolf's avatar
thomwolf committed
1301
1302

        logits = self.lm_loss(output)
thomwolf's avatar
thomwolf committed
1303

thomwolf's avatar
thomwolf committed
1304
1305
1306
1307
1308
1309
1310
        if target is not None:
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
                            target.view(-1))
            return loss, new_mems

thomwolf's avatar
thomwolf committed
1311
1312
1313
1314
1315
1316
1317
        # if self.output_attentions:
        #     all_attentions, encoded_layers = encoded_layers
        # sequence_output = encoded_layers[-1]
        # pooled_output = self.pooler(sequence_output)
        # if not output_all_encoded_layers:
        #     encoded_layers = encoded_layers[-1]
        # if self.output_attentions:
thomwolf's avatar
thomwolf committed
1318
        return logits, new_mems
thomwolf's avatar
thomwolf committed
1319
        #     return all_attentions, encoded_layers, pooled_output