modeling_albert.py 48.8 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ALBERT model. """

Lysandre's avatar
Lysandre committed
17
import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
18
19
import math
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
20
import warnings
21
22
from dataclasses import dataclass
from typing import Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Lysandre's avatar
Lysandre committed
24
25
import torch
import torch.nn as nn
Lysandre's avatar
Lysandre committed
26
from torch.nn import CrossEntropyLoss, MSELoss
Aymeric Augustin's avatar
Aymeric Augustin committed
27

28
from .configuration_albert import AlbertConfig
29
30
31
32
33
34
35
from .file_utils import (
    ModelOutput,
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
    replace_return_docstrings,
)
36
from .modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer
37
38
39
40
41
42
43
44
45
from .modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
46
from .modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices
47

Aymeric Augustin's avatar
Aymeric Augustin committed
48

Lysandre's avatar
Lysandre committed
49
50
logger = logging.getLogger(__name__)

51
_CONFIG_FOR_DOC = "AlbertConfig"
52
53
_TOKENIZER_FOR_DOC = "AlbertTokenizer"

Lysandre's avatar
Lysandre committed
54

55
56
57
58
59
60
61
62
63
64
65
ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "albert-base-v1",
    "albert-large-v1",
    "albert-xlarge-v1",
    "albert-xxlarge-v1",
    "albert-base-v2",
    "albert-large-v2",
    "albert-xlarge-v2",
    "albert-xxlarge-v2",
    # See all ALBERT models at https://huggingface.co/models?filter=albert
]
Lysandre's avatar
Lysandre committed
66
67


Lysandre's avatar
Lysandre committed
68
69
70
71
72
73
74
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model."""
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
75
76
77
78
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
Lysandre's avatar
Lysandre committed
79
80
81
82
83
84
85
86
87
88
89
90
91
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

Lysandre's avatar
Lysandre committed
92
93
    for name, array in zip(names, arrays):
        print(name)
94

Lysandre's avatar
Lysandre committed
95
    for name, array in zip(names, arrays):
Lysandre's avatar
Lysandre committed
96
        original_name = name
Lysandre's avatar
Lysandre committed
97
98
99
100
101

        # If saved from the TF HUB module
        name = name.replace("module/", "")

        # Renaming and simplifying
Lysandre's avatar
Lysandre committed
102
        name = name.replace("ffn_1", "ffn")
Lysandre's avatar
Lysandre committed
103
        name = name.replace("bert/", "albert/")
104
        name = name.replace("attention_1", "attention")
Lysandre's avatar
Lysandre committed
105
        name = name.replace("transform/", "")
106
107
        name = name.replace("LayerNorm_1", "full_layer_layer_norm")
        name = name.replace("LayerNorm", "attention/LayerNorm")
Lysandre's avatar
Lysandre committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        name = name.replace("transformer/", "")

        # The feed forward layer had an 'intermediate' step which has been abstracted away
        name = name.replace("intermediate/dense/", "")
        name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")

        # ALBERT attention was split between self and output which have been abstracted away
        name = name.replace("/output/", "/")
        name = name.replace("/self/", "/")

        # The pooler is a linear layer
        name = name.replace("pooler/dense", "pooler")

        # The classifier was simplified to predictions from cls/predictions
        name = name.replace("cls/predictions", "predictions")
        name = name.replace("predictions/attention", "predictions")

        # Naming was changed to be more explicit
126
127
128
        name = name.replace("embeddings/attention", "embeddings")
        name = name.replace("inner_group_", "albert_layers/")
        name = name.replace("group_", "albert_layer_groups/")
129
130
131
132
133

        # Classifier
        if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
            name = "classifier/" + name

134
        # No ALBERT model currently handles the next sentence prediction task
135
        if "seq_relationship" in name:
136
137
            name = name.replace("seq_relationship/output_", "sop_classifier/classifier/")
            name = name.replace("weights", "weight")
138

139
        name = name.split("/")
140
141

        # Ignore the gradients applied by the LAMB/ADAM optimizers.
142
143
144
145
146
147
148
        if (
            "adam_m" in name
            or "adam_v" in name
            or "AdamWeightDecayOptimizer" in name
            or "AdamWeightDecayOptimizer_1" in name
            or "global_step" in name
        ):
149
150
151
            logger.info("Skipping {}".format("/".join(name)))
            continue

Lysandre's avatar
Lysandre committed
152
153
        pointer = model
        for m_name in name:
154
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
155
                scope_names = re.split(r"_(\d+)", m_name)
Lysandre's avatar
Lysandre committed
156
            else:
157
                scope_names = [m_name]
Lysandre's avatar
Lysandre committed
158

159
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
160
                pointer = getattr(pointer, "weight")
161
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
162
                pointer = getattr(pointer, "bias")
163
            elif scope_names[0] == "output_weights":
164
                pointer = getattr(pointer, "weight")
165
            elif scope_names[0] == "squad":
166
                pointer = getattr(pointer, "classifier")
Lysandre's avatar
Lysandre committed
167
168
            else:
                try:
169
                    pointer = getattr(pointer, scope_names[0])
Lysandre's avatar
Lysandre committed
170
171
172
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
173
174
            if len(scope_names) >= 2:
                num = int(scope_names[1])
Lysandre's avatar
Lysandre committed
175
176
                pointer = pointer[num]

177
178
179
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
Lysandre's avatar
Lysandre committed
180
181
182
183
184
185
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
Lysandre's avatar
Lysandre committed
186
        print("Initialize PyTorch weight {} from {}".format(name, original_name))
Lysandre's avatar
Lysandre committed
187
188
189
190
191
        pointer.data = torch.from_numpy(array)

    return model


Lysandre's avatar
Lysandre committed
192
class AlbertEmbeddings(BertEmbeddings):
Lysandre's avatar
Lysandre committed
193
194
195
    """
    Construct the embeddings from word, position and token_type embeddings.
    """
196

Lysandre's avatar
Lysandre committed
197
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
198
        super().__init__(config)
Lysandre's avatar
Lysandre committed
199

200
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
Lysandre's avatar
Lysandre committed
201
202
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
Lysandre's avatar
Lysandre committed
203
        self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
Lysandre's avatar
Lysandre committed
204
205


Lysandre's avatar
Lysandre committed
206
class AlbertAttention(BertSelfAttention):
Lysandre's avatar
Lysandre committed
207
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
208
        super().__init__(config)
Lysandre's avatar
Lysandre committed
209
210

        self.num_attention_heads = config.num_attention_heads
211
        self.hidden_size = config.hidden_size
Lysandre's avatar
Lysandre committed
212
        self.attention_head_size = config.hidden_size // config.num_attention_heads
Lysandre's avatar
Lysandre committed
213
214
215
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
Lysandre's avatar
Lysandre committed
216
217
        self.pruned_heads = set()

Lysandre's avatar
Lysandre committed
218
219
220
    def prune_heads(self, heads):
        if len(heads) == 0:
            return
221
222
223
        heads, index = find_pruneable_heads_and_indices(
            heads, self.num_attention_heads, self.attention_head_size, self.pruned_heads
        )
Lysandre's avatar
Lysandre committed
224
225
226
227
228
229
230
231
232
233
234
235

        # Prune linear layers
        self.query = prune_linear_layer(self.query, index)
        self.key = prune_linear_layer(self.key, index)
        self.value = prune_linear_layer(self.value, index)
        self.dense = prune_linear_layer(self.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.num_attention_heads = self.num_attention_heads - len(heads)
        self.all_head_size = self.attention_head_size * self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

236
    def forward(self, input_ids, attention_mask=None, head_mask=None, output_attentions=False):
Lysandre's avatar
Lysandre committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        mixed_query_layer = self.query(input_ids)
        mixed_key_layer = self.key(input_ids)
        mixed_value_layer = self.value(input_ids)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
Lysandre's avatar
Lysandre committed
266
267

        # Should find a better way to do this
268
269
270
271
272
        w = (
            self.dense.weight.t()
            .view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
            .to(context_layer.dtype)
        )
273
        b = self.dense.bias.to(context_layer.dtype)
Lysandre's avatar
Lysandre committed
274
275

        projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
Lysandre's avatar
Lysandre committed
276
277
        projected_context_layer_dropout = self.dropout(projected_context_layer)
        layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout)
278
        return (layernormed_context_layer, attention_probs) if output_attentions else (layernormed_context_layer,)
Lysandre's avatar
Lysandre committed
279
280


Lysandre's avatar
Lysandre committed
281
class AlbertLayer(nn.Module):
Lysandre's avatar
Lysandre committed
282
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
283
        super().__init__()
284

Lysandre's avatar
Lysandre committed
285
        self.config = config
Lysandre's avatar
Lysandre committed
286
        self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
Lysandre's avatar
Lysandre committed
287
        self.attention = AlbertAttention(config)
288
        self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
Lysandre's avatar
Lysandre committed
289
        self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
290
        self.activation = ACT2FN[config.hidden_act]
Lysandre's avatar
Lysandre committed
291

Joseph Liu's avatar
Joseph Liu committed
292
293
294
    def forward(
        self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False
    ):
295
        attention_output = self.attention(hidden_states, attention_mask, head_mask, output_attentions)
296
        ffn_output = self.ffn(attention_output[0])
297
        ffn_output = self.activation(ffn_output)
298
        ffn_output = self.ffn_output(ffn_output)
299
        hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
Lysandre's avatar
Lysandre committed
300

301
        return (hidden_states,) + attention_output[1:]  # add attentions if we output them
Lysandre's avatar
Lysandre committed
302
303


Lysandre's avatar
Lysandre committed
304
class AlbertLayerGroup(nn.Module):
Lysandre's avatar
Lysandre committed
305
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
306
        super().__init__()
307

Lysandre's avatar
Lysandre committed
308
309
        self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])

Joseph Liu's avatar
Joseph Liu committed
310
311
312
    def forward(
        self, hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False
    ):
313
314
315
        layer_hidden_states = ()
        layer_attentions = ()

Lysandre's avatar
Lysandre committed
316
        for layer_index, albert_layer in enumerate(self.albert_layers):
317
            layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index], output_attentions)
318
319
            hidden_states = layer_output[0]

320
            if output_attentions:
321
322
                layer_attentions = layer_attentions + (layer_output[1],)

Joseph Liu's avatar
Joseph Liu committed
323
            if output_hidden_states:
Lysandre's avatar
Lysandre committed
324
                layer_hidden_states = layer_hidden_states + (hidden_states,)
Lysandre's avatar
Lysandre committed
325

326
        outputs = (hidden_states,)
Joseph Liu's avatar
Joseph Liu committed
327
        if output_hidden_states:
328
            outputs = outputs + (layer_hidden_states,)
329
        if output_attentions:
330
331
            outputs = outputs + (layer_attentions,)
        return outputs  # last-layer hidden state, (layer hidden states), (layer attentions)
Lysandre's avatar
Lysandre committed
332

Lysandre's avatar
Lysandre committed
333

Lysandre's avatar
Lysandre committed
334
335
class AlbertTransformer(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
336
        super().__init__()
337

Lysandre's avatar
Lysandre committed
338
        self.config = config
Lysandre's avatar
Lysandre committed
339
        self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
Lysandre's avatar
Lysandre committed
340
        self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
Lysandre's avatar
Lysandre committed
341

Joseph Liu's avatar
Joseph Liu committed
342
    def forward(
343
344
345
346
347
348
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        output_attentions=False,
        output_hidden_states=False,
349
        return_dict=False,
Joseph Liu's avatar
Joseph Liu committed
350
    ):
Lysandre's avatar
Lysandre committed
351
352
        hidden_states = self.embedding_hidden_mapping_in(hidden_states)

353
354
        all_hidden_states = (hidden_states,) if output_hidden_states else None
        all_attentions = () if output_attentions else None
355

356
357
        for i in range(self.config.num_hidden_layers):
            # Number of layers in a hidden group
Lysandre's avatar
Lysandre committed
358
            layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
359
360
361
362

            # Index of the hidden group
            group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))

363
364
365
366
            layer_group_output = self.albert_layer_groups[group_idx](
                hidden_states,
                attention_mask,
                head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
367
                output_attentions,
Joseph Liu's avatar
Joseph Liu committed
368
                output_hidden_states,
369
            )
370
371
            hidden_states = layer_group_output[0]

372
            if output_attentions:
Lysandre's avatar
Lysandre committed
373
                all_attentions = all_attentions + layer_group_output[-1]
374

Joseph Liu's avatar
Joseph Liu committed
375
            if output_hidden_states:
376
377
                all_hidden_states = all_hidden_states + (hidden_states,)

378
        if not return_dict:
379
380
381
382
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )
Lysandre's avatar
Lysandre committed
383

Lysandre's avatar
Lysandre committed
384

385
386
class AlbertPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
387
        a simple interface for downloading and loading pretrained models.
388
    """
389

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    config_class = AlbertConfig
    base_model_prefix = "albert"

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if isinstance(module, (nn.Linear)) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


407
408
409
410
411
412
@dataclass
class AlbertForPretrainingOutput(ModelOutput):
    """
    Output type of :class:`~transformers.AlbertForPretrainingModel`.

    Args:
413
        loss (`optional`, returned when ``labels`` is provided, ``torch.FloatTensor`` of shape :obj:`(1,)`):
414
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
415
        prediction_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        sop_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
            Prediction scores of the next sequence prediction (classification) head (scores of True/False
            continuation before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

433
434
435
    loss: Optional[torch.FloatTensor] = None
    prediction_logits: torch.FloatTensor = None
    sop_logits: torch.FloatTensor = None
436
437
438
439
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


Lysandre's avatar
Lysandre committed
440
ALBERT_START_DOCSTRING = r"""
441

Lysandre's avatar
Lysandre committed
442
443
444
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.
445

446
    Args:
447
        config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model.
448
449
450
451
452
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

ALBERT_INPUTS_DOCSTRING = r"""
453
454
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Lysandre's avatar
Lysandre committed
455
456
            Indices of input sequence tokens in the vocabulary.

457
458
            Indices can be obtained using :class:`transformers.AlbertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
459
            :func:`transformers.PreTrainedTokenizer` for details.
Lysandre's avatar
Lysandre committed
460

461
462
            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
463
464
465
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
Lysandre's avatar
Lysandre committed
466

467
            `What are attention masks? <../glossary.html#attention-mask>`__
Lysandre's avatar
Lysandre committed
468
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
469
470
471
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
Lysandre's avatar
Lysandre committed
472

473
474
            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
475
476
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
Lysandre's avatar
Lysandre committed
477

478
479
            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
480
481
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
482
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
flozi00's avatar
flozi00 committed
483
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
484
485
486
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
ZhuBaohe's avatar
ZhuBaohe committed
487
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
488
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
489
490
        output_hidden_states (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the hidden states of all layers are returned. See ``hidden_states`` under returned tensors for more detail.
491
492
493
        return_dict (:obj:`bool`, `optional`, defaults to :obj:`None`):
            If set to ``True``, the model will return a :class:`~transformers.file_utils.ModelOutput` instead of a
            plain tuple.
494
495
"""

496
497
498
499
500

@add_start_docstrings(
    "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
    ALBERT_START_DOCSTRING,
)
501
502
503
504
505
506
class AlbertModel(AlbertPreTrainedModel):

    config_class = AlbertConfig
    load_tf_weights = load_tf_weights_in_albert
    base_model_prefix = "albert"

Lysandre's avatar
Lysandre committed
507
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
508
        super().__init__(config)
Lysandre's avatar
Lysandre committed
509
510
511
512
513
514
515

        self.config = config
        self.embeddings = AlbertEmbeddings(config)
        self.encoder = AlbertTransformer(config)
        self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
        self.pooler_activation = nn.Tanh()

Lysandre's avatar
Lysandre committed
516
517
        self.init_weights()

LysandreJik's avatar
LysandreJik committed
518
519
520
521
522
523
    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

524
525
526
527
528
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings
Lysandre's avatar
Lysandre committed
529

Lysandre's avatar
Lysandre committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups.
            If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there
            is a total of 4 different layers.

            These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
            while [2,3] correspond to the two inner groups of the second hidden layer.

            Any layer with in index other than [0,1,2,3] will result in an error.
            See base class PreTrainedModel for more information about head pruning
        """
        for layer, heads in heads_to_prune.items():
            group_idx = int(layer / self.config.inner_group_num)
            inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
            self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)

548
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
549
550
551
552
553
554
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="albert-base-v2",
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
    )
555
556
557
558
559
560
561
562
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
563
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
564
        output_hidden_states=None,
565
        return_dict=None,
566
    ):
567
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
568
569
570
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
571
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
572

LysandreJik's avatar
LysandreJik committed
573
574
575
576
577
578
579
580
581
582
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device
Lysandre's avatar
Lysandre committed
583

Lysandre's avatar
Lysandre committed
584
        if attention_mask is None:
LysandreJik's avatar
LysandreJik committed
585
            attention_mask = torch.ones(input_shape, device=device)
Lysandre's avatar
Lysandre committed
586
        if token_type_ids is None:
LysandreJik's avatar
LysandreJik committed
587
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
Lysandre's avatar
Lysandre committed
588
589

        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
590
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Lysandre's avatar
Lysandre committed
591
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
592
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
Lysandre's avatar
Lysandre committed
593

594
595
596
        embedding_output = self.embeddings(
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
597
        encoder_outputs = self.encoder(
Joseph Liu's avatar
Joseph Liu committed
598
599
600
601
602
            embedding_output,
            extended_attention_mask,
            head_mask=head_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
603
            return_dict=return_dict,
604
        )
Lysandre's avatar
Lysandre committed
605

Lysandre's avatar
Lysandre committed
606
        sequence_output = encoder_outputs[0]
Lysandre's avatar
Lysandre committed
607

Lysandre's avatar
Lysandre committed
608
609
        pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0]))

610
        if not return_dict:
611
612
613
614
615
616
617
618
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )
Lysandre's avatar
Lysandre committed
619

620

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
@add_start_docstrings(
    """Albert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
    a `sentence order prediction (classification)` head. """,
    ALBERT_START_DOCSTRING,
)
class AlbertForPreTraining(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.albert = AlbertModel(config)
        self.predictions = AlbertMLMHead(config)
        self.sop_classifier = AlbertSOPHead(config)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings)

    def get_output_embeddings(self):
        return self.predictions.decoder

    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
644
    @replace_return_docstrings(output_type=AlbertForPretrainingOutput, config_class=_CONFIG_FOR_DOC)
645
646
647
648
649
650
651
652
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
653
        labels=None,
654
        sentence_order_label=None,
655
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
656
        output_hidden_states=None,
657
        return_dict=None,
658
        **kwargs,
659
660
    ):
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
661
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
662
663
664
665
666
667
668
669
670
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        sentence_order_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates original order (sequence A, then sequence B),
            ``1`` indicates switched order (sequence B, then sequence A).
Sylvain Gugger's avatar
Sylvain Gugger committed
671
672
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.
673
674
675
676
677

    Returns:

    Examples::

678
679
        >>> from transformers import AlbertTokenizer, AlbertForPreTraining
        >>> import torch
680

681
        >>> tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
682
        >>> model = AlbertForPreTraining.from_pretrained('albert-base-v2', return_dict=True)
683

684
685
        >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        >>> outputs = model(input_ids)
686

687
688
        >>> prediction_logits = outputs.prediction_logits
        >>> sop_logits = outputs.sop_logits
689
690
691

        """

Sylvain Gugger's avatar
Sylvain Gugger committed
692
693
694
        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
695
                FutureWarning,
Sylvain Gugger's avatar
Sylvain Gugger committed
696
697
698
            )
            labels = kwargs.pop("masked_lm_labels")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
699
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
700

701
702
703
704
705
706
707
        outputs = self.albert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
708
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
709
            output_hidden_states=output_hidden_states,
710
            return_dict=return_dict,
711
712
713
714
715
716
717
        )

        sequence_output, pooled_output = outputs[:2]

        prediction_scores = self.predictions(sequence_output)
        sop_scores = self.sop_classifier(pooled_output)

718
        total_loss = None
Sylvain Gugger's avatar
Sylvain Gugger committed
719
        if labels is not None and sentence_order_label is not None:
720
            loss_fct = CrossEntropyLoss()
Sylvain Gugger's avatar
Sylvain Gugger committed
721
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
722
723
724
            sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1))
            total_loss = masked_lm_loss + sentence_order_loss

725
        if not return_dict:
726
727
728
729
730
731
732
733
734
735
            output = (prediction_scores, sop_scores) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return AlbertForPretrainingOutput(
            loss=total_loss,
            prediction_logits=prediction_scores,
            sop_logits=sop_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
736
737


Lysandre's avatar
Lysandre committed
738
739
class AlbertMLMHead(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
740
        super().__init__()
Lysandre's avatar
Lysandre committed
741
742
743
744
745
746
747

        self.LayerNorm = nn.LayerNorm(config.embedding_size)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)
        self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
        self.activation = ACT2FN[config.hidden_act]

748
749
750
        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

Lysandre's avatar
Lysandre committed
751
752
753
754
755
756
    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.activation(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        hidden_states = self.decoder(hidden_states)

Martin Malmsten's avatar
Martin Malmsten committed
757
        prediction_scores = hidden_states
Lysandre's avatar
Lysandre committed
758
759
760

        return prediction_scores

Lysandre's avatar
Lysandre committed
761

762
763
764
765
766
767
768
769
770
771
772
773
774
class AlbertSOPHead(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.dropout = nn.Dropout(config.classifier_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, pooled_output):
        dropout_pooled_output = self.dropout(pooled_output)
        logits = self.classifier(dropout_pooled_output)
        return logits


775
@add_start_docstrings(
776
    "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING,
777
)
778
class AlbertForMaskedLM(AlbertPreTrainedModel):
Lysandre's avatar
Lysandre committed
779
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
780
        super().__init__(config)
Lysandre's avatar
Lysandre committed
781

Lysandre's avatar
Lysandre committed
782
        self.albert = AlbertModel(config)
Lysandre's avatar
Lysandre committed
783
        self.predictions = AlbertMLMHead(config)
Lysandre's avatar
Lysandre committed
784

Lysandre's avatar
Lysandre committed
785
786
787
        self.init_weights()
        self.tie_weights()

Lysandre's avatar
Lysandre committed
788
    def tie_weights(self):
789
        self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings)
Lysandre's avatar
Lysandre committed
790

LysandreJik's avatar
LysandreJik committed
791
792
793
    def get_output_embeddings(self):
        return self.predictions.decoder

794
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
795
796
797
798
799
800
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="albert-base-v2",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
    )
801
802
803
804
805
806
807
808
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
809
        labels=None,
810
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
811
        output_hidden_states=None,
812
        return_dict=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
813
        **kwargs
814
    ):
815
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
816
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
817
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
818
819
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with
820
            labels in ``[0, ..., config.vocab_size]``
Sylvain Gugger's avatar
Sylvain Gugger committed
821
822
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.
823
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
824
825
826
        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
827
                FutureWarning,
Sylvain Gugger's avatar
Sylvain Gugger committed
828
829
830
            )
            labels = kwargs.pop("masked_lm_labels")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
831
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Sylvain Gugger's avatar
Sylvain Gugger committed
832

LysandreJik's avatar
LysandreJik committed
833
834
835
836
837
838
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
839
            inputs_embeds=inputs_embeds,
840
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
841
            output_hidden_states=output_hidden_states,
842
            return_dict=return_dict,
LysandreJik's avatar
LysandreJik committed
843
        )
844
        sequence_outputs = outputs[0]
Lysandre's avatar
Lysandre committed
845
846

        prediction_scores = self.predictions(sequence_outputs)
Lysandre's avatar
Lysandre committed
847

848
        masked_lm_loss = None
Sylvain Gugger's avatar
Sylvain Gugger committed
849
        if labels is not None:
LysandreJik's avatar
LysandreJik committed
850
            loss_fct = CrossEntropyLoss()
Sylvain Gugger's avatar
Sylvain Gugger committed
851
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
Lysandre's avatar
Lysandre committed
852

853
        if not return_dict:
854
855
856
857
858
859
860
861
862
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
Lysandre's avatar
Lysandre committed
863
864


865
866
@add_start_docstrings(
    """Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
867
    the pooled output) e.g. for GLUE tasks. """,
868
869
    ALBERT_START_DOCSTRING,
)
Lysandre's avatar
Lysandre committed
870
871
class AlbertForSequenceClassification(AlbertPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
872
        super().__init__(config)
Lysandre's avatar
Lysandre committed
873
874
875
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
876
        self.dropout = nn.Dropout(config.classifier_dropout_prob)
Lysandre's avatar
Lysandre committed
877
878
879
880
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

881
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
882
883
884
885
886
887
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="albert-base-v2",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
888
889
890
891
892
893
894
895
896
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
897
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
898
        output_hidden_states=None,
899
        return_dict=None,
900
    ):
901
902
903
904
905
906
907
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
        """
908
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
Lysandre's avatar
Lysandre committed
909

LysandreJik's avatar
LysandreJik committed
910
911
912
913
914
915
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
916
            inputs_embeds=inputs_embeds,
917
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
918
            output_hidden_states=output_hidden_states,
919
            return_dict=return_dict,
LysandreJik's avatar
LysandreJik committed
920
        )
Lysandre's avatar
Lysandre committed
921
922
923
924
925
926

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

927
        loss = None
Lysandre's avatar
Lysandre committed
928
929
930
931
932
933
934
935
936
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

937
        if not return_dict:
938
939
940
941
942
943
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
Lysandre's avatar
Lysandre committed
944
945


946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
@add_start_docstrings(
    """Albert Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    ALBERT_START_DOCSTRING,
)
class AlbertForTokenClassification(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
963
964
965
966
967
968
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="albert-base-v2",
        output_type=TokenClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
969
970
971
972
973
974
975
976
977
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
978
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
979
        output_hidden_states=None,
980
        return_dict=None,
981
982
983
984
985
986
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
        """
987
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
988
989
990
991
992
993
994
995

        outputs = self.albert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
996
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
997
            output_hidden_states=output_hidden_states,
998
            return_dict=return_dict,
999
1000
1001
1002
1003
1004
1005
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

1006
        loss = None
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))

1018
        if not return_dict:
1019
1020
1021
1022
1023
1024
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return TokenClassifierOutput(
            loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )
1025
1026


1027
1028
@add_start_docstrings(
    """Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
Lysandre's avatar
Lysandre committed
1029
    the hidden-states output to compute `span start logits` and `span end logits`). """,
1030
1031
    ALBERT_START_DOCSTRING,
)
Lysandre's avatar
Lysandre committed
1032
1033
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1034
        super().__init__(config)
Lysandre's avatar
Lysandre committed
1035
1036
1037
1038
1039
1040
1041
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1042
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
1043
1044
1045
1046
1047
1048
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="albert-base-v2",
        output_type=QuestionAnsweringModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
1059
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1060
        output_hidden_states=None,
1061
        return_dict=None,
1062
    ):
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        """
1073
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
LysandreJik's avatar
LysandreJik committed
1074
1075
1076
1077
1078
1079
1080

        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
1081
            inputs_embeds=inputs_embeds,
1082
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1083
            output_hidden_states=output_hidden_states,
1084
            return_dict=return_dict,
LysandreJik's avatar
LysandreJik committed
1085
        )
Lysandre's avatar
Lysandre committed
1086
1087
1088
1089
1090
1091
1092
1093

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1094
        total_loss = None
Lysandre's avatar
Lysandre committed
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2

1111
        if not return_dict:
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
            output = (start_logits, end_logits) + outputs[2:]
            return ((total_loss,) + output) if total_loss is not None else output

        return QuestionAnsweringModelOutput(
            loss=total_loss,
            start_logits=start_logits,
            end_logits=end_logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139


@add_start_docstrings(
    """Albert Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    ALBERT_START_DOCSTRING,
)
class AlbertForMultipleChoice(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.albert = AlbertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.init_weights()

    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
1140
1141
1142
1143
1144
1145
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="albert-base-v2",
        output_type=MultipleChoiceModelOutput,
        config_class=_CONFIG_FOR_DOC,
    )
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1156
        output_hidden_states=None,
1157
        return_dict=None,
1158
1159
1160
1161
1162
1163
1164
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)
        """
1165
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]

        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )
        outputs = self.albert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1185
            output_hidden_states=output_hidden_states,
1186
            return_dict=return_dict,
1187
1188
1189
1190
1191
1192
1193
1194
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

1195
        loss = None
1196
1197
1198
1199
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)

1200
        if not return_dict:
1201
1202
1203
1204
1205
1206
            output = (reshaped_logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return MultipleChoiceModelOutput(
            loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions,
        )