"docs/vscode:/vscode.git/clone" did not exist on "28a22834bf609b27d0178b5ba99224f69577a3b6"
modeling_albert.py 49.3 KB
Newer Older
Lysandre's avatar
Lysandre committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ALBERT model. """

Lysandre's avatar
Lysandre committed
17
import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
18
19
20
import math
import os

Lysandre's avatar
Lysandre committed
21
22
import torch
import torch.nn as nn
Lysandre's avatar
Lysandre committed
23
from torch.nn import CrossEntropyLoss, MSELoss
Aymeric Augustin's avatar
Aymeric Augustin committed
24

25
from .configuration_albert import AlbertConfig
26
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
27
28
from .modeling_bert import ACT2FN, BertEmbeddings, BertSelfAttention, prune_linear_layer
from .modeling_utils import PreTrainedModel
29

Aymeric Augustin's avatar
Aymeric Augustin committed
30

Lysandre's avatar
Lysandre committed
31
32
logger = logging.getLogger(__name__)

Lysandre's avatar
Lysandre committed
33
34

ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
Julien Chaumond's avatar
Julien Chaumond committed
35
36
37
38
39
40
41
42
    "albert-base-v1": "https://cdn.huggingface.co/albert-base-v1-pytorch_model.bin",
    "albert-large-v1": "https://cdn.huggingface.co/albert-large-v1-pytorch_model.bin",
    "albert-xlarge-v1": "https://cdn.huggingface.co/albert-xlarge-v1-pytorch_model.bin",
    "albert-xxlarge-v1": "https://cdn.huggingface.co/albert-xxlarge-v1-pytorch_model.bin",
    "albert-base-v2": "https://cdn.huggingface.co/albert-base-v2-pytorch_model.bin",
    "albert-large-v2": "https://cdn.huggingface.co/albert-large-v2-pytorch_model.bin",
    "albert-xlarge-v2": "https://cdn.huggingface.co/albert-xlarge-v2-pytorch_model.bin",
    "albert-xxlarge-v2": "https://cdn.huggingface.co/albert-xxlarge-v2-pytorch_model.bin",
Lysandre's avatar
Lysandre committed
43
44
45
}


Lysandre's avatar
Lysandre committed
46
47
48
49
50
51
52
def load_tf_weights_in_albert(model, config, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model."""
    try:
        import re
        import numpy as np
        import tensorflow as tf
    except ImportError:
53
54
55
56
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
Lysandre's avatar
Lysandre committed
57
58
59
60
61
62
63
64
65
66
67
68
69
        raise
    tf_path = os.path.abspath(tf_checkpoint_path)
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

Lysandre's avatar
Lysandre committed
70
71
    for name, array in zip(names, arrays):
        print(name)
72

Lysandre's avatar
Lysandre committed
73
    for name, array in zip(names, arrays):
Lysandre's avatar
Lysandre committed
74
        original_name = name
Lysandre's avatar
Lysandre committed
75
76
77
78
79

        # If saved from the TF HUB module
        name = name.replace("module/", "")

        # Renaming and simplifying
Lysandre's avatar
Lysandre committed
80
        name = name.replace("ffn_1", "ffn")
Lysandre's avatar
Lysandre committed
81
        name = name.replace("bert/", "albert/")
82
        name = name.replace("attention_1", "attention")
Lysandre's avatar
Lysandre committed
83
        name = name.replace("transform/", "")
84
85
        name = name.replace("LayerNorm_1", "full_layer_layer_norm")
        name = name.replace("LayerNorm", "attention/LayerNorm")
Lysandre's avatar
Lysandre committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        name = name.replace("transformer/", "")

        # The feed forward layer had an 'intermediate' step which has been abstracted away
        name = name.replace("intermediate/dense/", "")
        name = name.replace("ffn/intermediate/output/dense/", "ffn_output/")

        # ALBERT attention was split between self and output which have been abstracted away
        name = name.replace("/output/", "/")
        name = name.replace("/self/", "/")

        # The pooler is a linear layer
        name = name.replace("pooler/dense", "pooler")

        # The classifier was simplified to predictions from cls/predictions
        name = name.replace("cls/predictions", "predictions")
        name = name.replace("predictions/attention", "predictions")

        # Naming was changed to be more explicit
104
105
106
        name = name.replace("embeddings/attention", "embeddings")
        name = name.replace("inner_group_", "albert_layers/")
        name = name.replace("group_", "albert_layer_groups/")
107
108
109
110
111

        # Classifier
        if len(name.split("/")) == 1 and ("output_bias" in name or "output_weights" in name):
            name = "classifier/" + name

112
        # No ALBERT model currently handles the next sentence prediction task
113
        if "seq_relationship" in name:
114
115
            name = name.replace("seq_relationship/output_", "sop_classifier/classifier/")
            name = name.replace("weights", "weight")
116

117
        name = name.split("/")
118
119

        # Ignore the gradients applied by the LAMB/ADAM optimizers.
120
121
122
123
124
125
126
        if (
            "adam_m" in name
            or "adam_v" in name
            or "AdamWeightDecayOptimizer" in name
            or "AdamWeightDecayOptimizer_1" in name
            or "global_step" in name
        ):
127
128
129
            logger.info("Skipping {}".format("/".join(name)))
            continue

Lysandre's avatar
Lysandre committed
130
131
        pointer = model
        for m_name in name:
132
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
133
                scope_names = re.split(r"_(\d+)", m_name)
Lysandre's avatar
Lysandre committed
134
            else:
135
                scope_names = [m_name]
Lysandre's avatar
Lysandre committed
136

137
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
138
                pointer = getattr(pointer, "weight")
139
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
140
                pointer = getattr(pointer, "bias")
141
            elif scope_names[0] == "output_weights":
142
                pointer = getattr(pointer, "weight")
143
            elif scope_names[0] == "squad":
144
                pointer = getattr(pointer, "classifier")
Lysandre's avatar
Lysandre committed
145
146
            else:
                try:
147
                    pointer = getattr(pointer, scope_names[0])
Lysandre's avatar
Lysandre committed
148
149
150
                except AttributeError:
                    logger.info("Skipping {}".format("/".join(name)))
                    continue
151
152
            if len(scope_names) >= 2:
                num = int(scope_names[1])
Lysandre's avatar
Lysandre committed
153
154
                pointer = pointer[num]

155
156
157
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
Lysandre's avatar
Lysandre committed
158
159
160
161
162
163
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
Lysandre's avatar
Lysandre committed
164
        print("Initialize PyTorch weight {} from {}".format(name, original_name))
Lysandre's avatar
Lysandre committed
165
166
167
168
169
        pointer.data = torch.from_numpy(array)

    return model


Lysandre's avatar
Lysandre committed
170
class AlbertEmbeddings(BertEmbeddings):
Lysandre's avatar
Lysandre committed
171
172
173
    """
    Construct the embeddings from word, position and token_type embeddings.
    """
174

Lysandre's avatar
Lysandre committed
175
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
176
        super().__init__(config)
Lysandre's avatar
Lysandre committed
177

178
        self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
Lysandre's avatar
Lysandre committed
179
180
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
Lysandre's avatar
Lysandre committed
181
        self.LayerNorm = torch.nn.LayerNorm(config.embedding_size, eps=config.layer_norm_eps)
Lysandre's avatar
Lysandre committed
182
183


Lysandre's avatar
Lysandre committed
184
class AlbertAttention(BertSelfAttention):
Lysandre's avatar
Lysandre committed
185
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
186
        super().__init__(config)
Lysandre's avatar
Lysandre committed
187

188
        self.output_attentions = config.output_attentions
Lysandre's avatar
Lysandre committed
189
        self.num_attention_heads = config.num_attention_heads
190
        self.hidden_size = config.hidden_size
Lysandre's avatar
Lysandre committed
191
        self.attention_head_size = config.hidden_size // config.num_attention_heads
Lysandre's avatar
Lysandre committed
192
193
194
        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
Lysandre's avatar
Lysandre committed
195
196
        self.pruned_heads = set()

Lysandre's avatar
Lysandre committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.num_attention_heads, self.attention_head_size)
        heads = set(heads) - self.pruned_heads  # Convert to set and emove already pruned heads
        for head in heads:
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()

        # Prune linear layers
        self.query = prune_linear_layer(self.query, index)
        self.key = prune_linear_layer(self.key, index)
        self.value = prune_linear_layer(self.value, index)
        self.dense = prune_linear_layer(self.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.num_attention_heads = self.num_attention_heads - len(heads)
        self.all_head_size = self.attention_head_size * self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

Lysandre's avatar
Lysandre committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def forward(self, input_ids, attention_mask=None, head_mask=None):
        mixed_query_layer = self.query(input_ids)
        mixed_key_layer = self.key(input_ids)
        mixed_value_layer = self.value(input_ids)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
Lysandre's avatar
Lysandre committed
250
251

        # Should find a better way to do this
252
253
254
255
256
        w = (
            self.dense.weight.t()
            .view(self.num_attention_heads, self.attention_head_size, self.hidden_size)
            .to(context_layer.dtype)
        )
257
        b = self.dense.bias.to(context_layer.dtype)
Lysandre's avatar
Lysandre committed
258
259

        projected_context_layer = torch.einsum("bfnd,ndh->bfh", context_layer, w) + b
Lysandre's avatar
Lysandre committed
260
261
        projected_context_layer_dropout = self.dropout(projected_context_layer)
        layernormed_context_layer = self.LayerNorm(input_ids + projected_context_layer_dropout)
262
        return (layernormed_context_layer, attention_probs) if self.output_attentions else (layernormed_context_layer,)
Lysandre's avatar
Lysandre committed
263
264


Lysandre's avatar
Lysandre committed
265
class AlbertLayer(nn.Module):
Lysandre's avatar
Lysandre committed
266
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
267
        super().__init__()
268

Lysandre's avatar
Lysandre committed
269
        self.config = config
Lysandre's avatar
Lysandre committed
270
        self.full_layer_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
Lysandre's avatar
Lysandre committed
271
        self.attention = AlbertAttention(config)
272
        self.ffn = nn.Linear(config.hidden_size, config.intermediate_size)
Lysandre's avatar
Lysandre committed
273
        self.ffn_output = nn.Linear(config.intermediate_size, config.hidden_size)
274
        self.activation = ACT2FN[config.hidden_act]
Lysandre's avatar
Lysandre committed
275
276

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
Lysandre's avatar
Lysandre committed
277
        attention_output = self.attention(hidden_states, attention_mask, head_mask)
278
        ffn_output = self.ffn(attention_output[0])
279
        ffn_output = self.activation(ffn_output)
280
        ffn_output = self.ffn_output(ffn_output)
281
        hidden_states = self.full_layer_layer_norm(ffn_output + attention_output[0])
Lysandre's avatar
Lysandre committed
282

283
        return (hidden_states,) + attention_output[1:]  # add attentions if we output them
Lysandre's avatar
Lysandre committed
284
285


Lysandre's avatar
Lysandre committed
286
class AlbertLayerGroup(nn.Module):
Lysandre's avatar
Lysandre committed
287
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
288
        super().__init__()
289

290
291
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
Lysandre's avatar
Lysandre committed
292
293
294
        self.albert_layers = nn.ModuleList([AlbertLayer(config) for _ in range(config.inner_group_num)])

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
295
296
297
        layer_hidden_states = ()
        layer_attentions = ()

Lysandre's avatar
Lysandre committed
298
299
        for layer_index, albert_layer in enumerate(self.albert_layers):
            layer_output = albert_layer(hidden_states, attention_mask, head_mask[layer_index])
300
301
302
303
304
            hidden_states = layer_output[0]

            if self.output_attentions:
                layer_attentions = layer_attentions + (layer_output[1],)

Lysandre's avatar
Lysandre committed
305
306
            if self.output_hidden_states:
                layer_hidden_states = layer_hidden_states + (hidden_states,)
Lysandre's avatar
Lysandre committed
307

308
309
310
311
312
313
        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (layer_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (layer_attentions,)
        return outputs  # last-layer hidden state, (layer hidden states), (layer attentions)
Lysandre's avatar
Lysandre committed
314

Lysandre's avatar
Lysandre committed
315

Lysandre's avatar
Lysandre committed
316
317
class AlbertTransformer(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
318
        super().__init__()
319

Lysandre's avatar
Lysandre committed
320
        self.config = config
Lysandre's avatar
Lysandre committed
321
322
323
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
        self.embedding_hidden_mapping_in = nn.Linear(config.embedding_size, config.hidden_size)
Lysandre's avatar
Lysandre committed
324
        self.albert_layer_groups = nn.ModuleList([AlbertLayerGroup(config) for _ in range(config.num_hidden_groups)])
Lysandre's avatar
Lysandre committed
325
326
327
328

    def forward(self, hidden_states, attention_mask=None, head_mask=None):
        hidden_states = self.embedding_hidden_mapping_in(hidden_states)

329
330
331
332
333
        all_attentions = ()

        if self.output_hidden_states:
            all_hidden_states = (hidden_states,)

334
335
        for i in range(self.config.num_hidden_layers):
            # Number of layers in a hidden group
Lysandre's avatar
Lysandre committed
336
            layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
337
338
339
340

            # Index of the hidden group
            group_idx = int(i / (self.config.num_hidden_layers / self.config.num_hidden_groups))

341
342
343
344
345
            layer_group_output = self.albert_layer_groups[group_idx](
                hidden_states,
                attention_mask,
                head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
            )
346
347
348
            hidden_states = layer_group_output[0]

            if self.output_attentions:
Lysandre's avatar
Lysandre committed
349
                all_attentions = all_attentions + layer_group_output[-1]
350
351
352
353
354
355
356
357
358
359

            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states,)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
Lysandre's avatar
Lysandre committed
360

Lysandre's avatar
Lysandre committed
361

362
363
class AlbertPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
364
        a simple interface for downloading and loading pretrained models.
365
    """
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
    config_class = AlbertConfig
    pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "albert"

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if isinstance(module, (nn.Linear)) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


Lysandre's avatar
Lysandre committed
385
ALBERT_START_DOCSTRING = r"""
386

Lysandre's avatar
Lysandre committed
387
388
389
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.
390

391
    Args:
392
        config (:class:`~transformers.AlbertConfig`): Model configuration class with all the parameters of the model.
393
394
395
396
397
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

ALBERT_INPUTS_DOCSTRING = r"""
398
399
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Lysandre's avatar
Lysandre committed
400
401
            Indices of input sequence tokens in the vocabulary.

402
403
            Indices can be obtained using :class:`transformers.AlbertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
404
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.
Lysandre's avatar
Lysandre committed
405

406
407
            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
408
409
410
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
Lysandre's avatar
Lysandre committed
411

412
            `What are attention masks? <../glossary.html#attention-mask>`__
Lysandre's avatar
Lysandre committed
413
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
414
415
416
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
Lysandre's avatar
Lysandre committed
417

418
419
            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
420
421
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
Lysandre's avatar
Lysandre committed
422

423
424
            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
425
426
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
427
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
428
429
430
431
        input_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
432
433
"""

434
435
436
437
438

@add_start_docstrings(
    "The bare ALBERT Model transformer outputting raw hidden-states without any specific head on top.",
    ALBERT_START_DOCSTRING,
)
439
440
441
442
443
444
445
class AlbertModel(AlbertPreTrainedModel):

    config_class = AlbertConfig
    pretrained_model_archive_map = ALBERT_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_albert
    base_model_prefix = "albert"

Lysandre's avatar
Lysandre committed
446
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
447
        super().__init__(config)
Lysandre's avatar
Lysandre committed
448
449
450
451
452
453
454

        self.config = config
        self.embeddings = AlbertEmbeddings(config)
        self.encoder = AlbertTransformer(config)
        self.pooler = nn.Linear(config.hidden_size, config.hidden_size)
        self.pooler_activation = nn.Tanh()

Lysandre's avatar
Lysandre committed
455
456
        self.init_weights()

LysandreJik's avatar
LysandreJik committed
457
458
459
460
461
462
    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

463
464
465
466
467
    def _resize_token_embeddings(self, new_num_tokens):
        old_embeddings = self.embeddings.word_embeddings
        new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens)
        self.embeddings.word_embeddings = new_embeddings
        return self.embeddings.word_embeddings
Lysandre's avatar
Lysandre committed
468

Lysandre's avatar
Lysandre committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            ALBERT has a different architecture in that its layers are shared across groups, which then has inner groups.
            If an ALBERT model has 12 hidden layers and 2 hidden groups, with two inner groups, there
            is a total of 4 different layers.

            These layers are flattened: the indices [0,1] correspond to the two inner groups of the first hidden layer,
            while [2,3] correspond to the two inner groups of the second hidden layer.

            Any layer with in index other than [0,1,2,3] will result in an error.
            See base class PreTrainedModel for more information about head pruning
        """
        for layer, heads in heads_to_prune.items():
            group_idx = int(layer / self.config.inner_group_num)
            inner_group_idx = int(layer - group_idx * self.config.inner_group_num)
            self.encoder.albert_layer_groups[group_idx].albert_layers[inner_group_idx].attention.prune_heads(heads)

487
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
488
489
490
491
492
493
494
495
496
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
    ):
497
498
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
499
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during pre-training.

            This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Example::

        from transformers import AlbertModel, AlbertTokenizer
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertModel.from_pretrained('albert-base-v2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

        """
LysandreJik's avatar
LysandreJik committed
535
536
537
538
539
540
541
542
543
544
545

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device
Lysandre's avatar
Lysandre committed
546

Lysandre's avatar
Lysandre committed
547
        if attention_mask is None:
LysandreJik's avatar
LysandreJik committed
548
            attention_mask = torch.ones(input_shape, device=device)
Lysandre's avatar
Lysandre committed
549
        if token_type_ids is None:
LysandreJik's avatar
LysandreJik committed
550
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
Lysandre's avatar
Lysandre committed
551
552

        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
553
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
Lysandre's avatar
Lysandre committed
554
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
555
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
Lysandre's avatar
Lysandre committed
556

557
558
559
560
        embedding_output = self.embeddings(
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = self.encoder(embedding_output, extended_attention_mask, head_mask=head_mask)
Lysandre's avatar
Lysandre committed
561

Lysandre's avatar
Lysandre committed
562
        sequence_output = encoder_outputs[0]
Lysandre's avatar
Lysandre committed
563

Lysandre's avatar
Lysandre committed
564
565
        pooled_output = self.pooler_activation(self.pooler(sequence_output[:, 0]))

566
567
568
        outputs = (sequence_output, pooled_output) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
Lysandre's avatar
Lysandre committed
569
570
        return outputs

571

572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
@add_start_docstrings(
    """Albert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
    a `sentence order prediction (classification)` head. """,
    ALBERT_START_DOCSTRING,
)
class AlbertForPreTraining(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.albert = AlbertModel(config)
        self.predictions = AlbertMLMHead(config)
        self.sop_classifier = AlbertSOPHead(config)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings)

    def get_output_embeddings(self):
        return self.predictions.decoder

    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        sentence_order_label=None,
    ):
        r"""
        masked_lm_labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        sentence_order_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates original order (sequence A, then sequence B),
            ``1`` indicates switched order (sequence B, then sequence A).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        sop_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
            Prediction scores of the next sequence prediction (classification) head (scores of True/False
            continuation before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.


    Examples::

        from transformers import AlbertTokenizer, AlbertForPreTraining
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertForPreTraining.from_pretrained('albert-base-v2')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)

        prediction_scores, sop_scores = outputs[:2]

        """

        outputs = self.albert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        sequence_output, pooled_output = outputs[:2]

        prediction_scores = self.predictions(sequence_output)
        sop_scores = self.sop_classifier(pooled_output)

        outputs = (prediction_scores, sop_scores,) + outputs[2:]  # add hidden states and attention if they are here

        if masked_lm_labels is not None and sentence_order_label is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            sentence_order_loss = loss_fct(sop_scores.view(-1, 2), sentence_order_label.view(-1))
            total_loss = masked_lm_loss + sentence_order_loss
            outputs = (total_loss,) + outputs

        return outputs  # (loss), prediction_scores, sop_scores, (hidden_states), (attentions)


Lysandre's avatar
Lysandre committed
681
682
class AlbertMLMHead(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
683
        super().__init__()
Lysandre's avatar
Lysandre committed
684
685
686
687
688
689
690

        self.LayerNorm = nn.LayerNorm(config.embedding_size)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
        self.dense = nn.Linear(config.hidden_size, config.embedding_size)
        self.decoder = nn.Linear(config.embedding_size, config.vocab_size)
        self.activation = ACT2FN[config.hidden_act]

691
692
693
        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

Lysandre's avatar
Lysandre committed
694
695
696
697
698
699
    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.activation(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        hidden_states = self.decoder(hidden_states)

Martin Malmsten's avatar
Martin Malmsten committed
700
        prediction_scores = hidden_states
Lysandre's avatar
Lysandre committed
701
702
703

        return prediction_scores

Lysandre's avatar
Lysandre committed
704

705
706
707
708
709
710
711
712
713
714
715
716
717
class AlbertSOPHead(nn.Module):
    def __init__(self, config):
        super().__init__()

        self.dropout = nn.Dropout(config.classifier_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, pooled_output):
        dropout_pooled_output = self.dropout(pooled_output)
        logits = self.classifier(dropout_pooled_output)
        return logits


718
@add_start_docstrings(
719
    "Albert Model with a `language modeling` head on top.", ALBERT_START_DOCSTRING,
720
)
721
class AlbertForMaskedLM(AlbertPreTrainedModel):
Lysandre's avatar
Lysandre committed
722
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
723
        super().__init__(config)
Lysandre's avatar
Lysandre committed
724

Lysandre's avatar
Lysandre committed
725
        self.albert = AlbertModel(config)
Lysandre's avatar
Lysandre committed
726
        self.predictions = AlbertMLMHead(config)
Lysandre's avatar
Lysandre committed
727

Lysandre's avatar
Lysandre committed
728
729
730
        self.init_weights()
        self.tie_weights()

Lysandre's avatar
Lysandre committed
731
    def tie_weights(self):
732
        self._tie_or_clone_weights(self.predictions.decoder, self.albert.embeddings.word_embeddings)
Lysandre's avatar
Lysandre committed
733

LysandreJik's avatar
LysandreJik committed
734
735
736
    def get_output_embeddings(self):
        return self.predictions.decoder

737
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
738
739
740
741
742
743
744
745
746
747
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
    ):
748
749
750
        r"""
        masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
751
752
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with
753
754
755
756
757
758
            labels in ``[0, ..., config.vocab_size]``

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
Lysandre's avatar
Lysandre committed
759
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Example::

        from transformers import AlbertTokenizer, AlbertForMaskedLM
        import torch

Lysandre's avatar
Lysandre committed
778
779
        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertForMaskedLM.from_pretrained('albert-base-v2')
780
781
782
783
784
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

        """
LysandreJik's avatar
LysandreJik committed
785
786
787
788
789
790
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
791
            inputs_embeds=inputs_embeds,
LysandreJik's avatar
LysandreJik committed
792
        )
793
        sequence_outputs = outputs[0]
Lysandre's avatar
Lysandre committed
794
795

        prediction_scores = self.predictions(sequence_outputs)
Lysandre's avatar
Lysandre committed
796

797
798
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
        if masked_lm_labels is not None:
LysandreJik's avatar
LysandreJik committed
799
            loss_fct = CrossEntropyLoss()
800
801
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs
Lysandre's avatar
Lysandre committed
802

803
        return outputs
Lysandre's avatar
Lysandre committed
804
805


806
807
@add_start_docstrings(
    """Albert Model transformer with a sequence classification/regression head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
808
    the pooled output) e.g. for GLUE tasks. """,
809
810
    ALBERT_START_DOCSTRING,
)
Lysandre's avatar
Lysandre committed
811
812
class AlbertForSequenceClassification(AlbertPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
813
        super().__init__(config)
Lysandre's avatar
Lysandre committed
814
815
816
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
817
        self.dropout = nn.Dropout(config.classifier_dropout_prob)
Lysandre's avatar
Lysandre committed
818
819
820
821
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

822
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
823
824
825
826
827
828
829
830
831
832
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
833
834
835
836
837
838
839
840
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
841
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
        loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

        Examples::

            from transformers import AlbertTokenizer, AlbertForSequenceClassification
            import torch

            tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
            model = AlbertForSequenceClassification.from_pretrained('albert-base-v2')
            input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
            labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
            outputs = model(input_ids, labels=labels)
            loss, logits = outputs[:2]

        """
Lysandre's avatar
Lysandre committed
871

LysandreJik's avatar
LysandreJik committed
872
873
874
875
876
877
        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
878
            inputs_embeds=inputs_embeds,
LysandreJik's avatar
LysandreJik committed
879
        )
Lysandre's avatar
Lysandre committed
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

Lysandre's avatar
Lysandre committed
898
899
900
        return outputs  # (loss), logits, (hidden_states), (attentions)


901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
@add_start_docstrings(
    """Albert Model with a token classification head on top (a linear layer on top of
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
    ALBERT_START_DOCSTRING,
)
class AlbertForTokenClassification(AlbertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

        from transformers import AlbertTokenizer, AlbertForTokenClassification
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertForTokenClassification.from_pretrained('albert-base-v2')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)

        loss, scores = outputs[:2]

        """

        outputs = self.albert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        sequence_output = outputs[0]

        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)


998
999
@add_start_docstrings(
    """Albert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
Lysandre's avatar
Lysandre committed
1000
    the hidden-states output to compute `span start logits` and `span end logits`). """,
1001
1002
    ALBERT_START_DOCSTRING,
)
Lysandre's avatar
Lysandre committed
1003
1004
class AlbertForQuestionAnswering(AlbertPreTrainedModel):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1005
        super().__init__(config)
Lysandre's avatar
Lysandre committed
1006
1007
1008
1009
1010
1011
1012
        self.num_labels = config.num_labels

        self.albert = AlbertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1013
    @add_start_docstrings_to_callable(ALBERT_INPUTS_DOCSTRING)
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
    ):
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1036
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        start_scores ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        end_scores: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

Lysandre's avatar
Lysandre committed
1055
    Examples::
1056

Lysandre's avatar
Lysandre committed
1057
        # The checkpoint albert-base-v2 is not fine-tuned for question answering. Please see the
1058
        # examples/question-answering/run_squad.py example to see how to fine-tune a model to a question answering task.
1059

Lysandre's avatar
Lysandre committed
1060
1061
1062
1063
1064
1065
1066
1067
        from transformers import AlbertTokenizer, AlbertForQuestionAnswering
        import torch

        tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
        model = AlbertForQuestionAnswering.from_pretrained('albert-base-v2')
        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
        input_dict = tokenizer.encode_plus(question, text, return_tensors='pt')
        start_scores, end_scores = model(**input_dict)
1068
1069

        """
LysandreJik's avatar
LysandreJik committed
1070
1071
1072
1073
1074
1075
1076

        outputs = self.albert(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
1077
            inputs_embeds=inputs_embeds,
LysandreJik's avatar
LysandreJik committed
1078
        )
Lysandre's avatar
Lysandre committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105

        sequence_output = outputs[0]

        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        outputs = (start_logits, end_logits,) + outputs[2:]
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            outputs = (total_loss,) + outputs

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)